Skip to main content

This cosmic system has a weird gamma ray heartbeat and scientists have no idea why

An international team of astronomers has discovered a most unusual system — one in which a gas cloud is sending out a ‘heartbeat’ of gamma rays in time with the pulses of a nearby black hole, despite being located 100 light-years away. The system demonstrating this highly unexpected and mysterious behavior is called SS 433, located 15,000 light-years away in the constellation of Aquila.

Illustration of microquasar SS 433
The microquasar SS 433 (background) sways with a period of 162 days. The inconspicuous gas cloud Fermi J1913+0515 (foreground), about 100 light-years away, pulsates with the same rhythm, suggesting a direct connection. But how exactly the microquasar drives this ‘heartbeat’ of the gas cloud is still puzzling. DESY, Science Communication Lab

The black hole in question is part of a system that includes a giant star which is about 30 times the mass of our sun, and the two objects are close together, orbiting each other every 13 days. The black hole is gradually sucking away matter such as gas from the star and devouring it.

The black hole gives off pulses due to the way matter falls into it. “This material accumulates in an accretion disc before falling into the black hole, like water in the whirl above the drain of a bath tub,” lead author Jian Li of the German research center Deutsches Elektronen-Synchrotron explained in a statement. “However, a part of that matter does not fall down the drain but shoots out at high speed in two narrow jets in opposite directions above and below the rotating accretion disk.”

These jets produce gamma rays and sway back and forth like a spinning top, creating a spiral with a period of 162 days. This behavior is familiar to astronomers as it is similar to a smaller-scale version of a type of black hole called a quasar. Therefore it’s referred to as a microquasar.

So far, so typical. But things got really weird when the researchers looked at an apparently unremarkable cosmic dust cloud located relatively far away from the black hole. This gas cloud, called Fermi J1913+0515, is located 100 light-years away and yet is giving out a gamma ray signal with exactly the same period of 162 days. Scientists are baffled as to how this could be the case as the cloud seems to be too far away from the microquasar to be directly illuminated by it.

“Finding such an unambiguous connection via timing, about 100 light years away from the micro quasar, not even along the direction of the jets is as unexpected as amazing,” Li said. “But how the black hole can power the gas cloud’s heartbeat is unclear to us.”

The researchers theorize that there could be protons created at the ends of the jets interacting with the cloud and producing gamma rays, or that the outflow from the jets could be hitting the cloud and causing the pulses. But they say they’ll need to collect more data and develop new theories about how black holes interact with their surroundings to understand this unique system.

“SS 433 continues to amaze observers at all frequencies and theoreticians alike,” Li said. “And it is certain to provide a testbed for our ideas on cosmic-ray production and propagation near micro quasars for years to come.”

The findings are published in the journal Nature Astronomy.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Uh-oh: Black hole up to 100 billion times the mass of the sun has vanished
This image of Abell 2261 contains X-ray data from Chandra (pink) showing hot gas pervading the cluster as well as optical data from Hubble and the Subaru Telescope that show galaxies in the cluster and in the background.

This image of Abell 2261 contains X-ray data from Chandra (pink) showing hot gas pervading the cluster as well as optical data from Hubble and the Subaru Telescope that show galaxies in the cluster and in the background. Astronomers used these telescopes to search the galaxy in the center of the image for evidence of a black hole, weighing between 3 and 100 billion times the Sun, that is expected to be there. No sign of this black hole was found, deepening a mystery about what is happening in this system. X-ray: NASA/CXC/Univ of Michigan/K. Gültekin ; Optical: NASA/STScI and NAOJ/Subaru; Infrared: NSF/NOAO/KPNO; Radio: NSF/NOAO/VLA

You'd think that it would be hard to lose one of the largest black holes in the universe. However, scientists are currently being puzzled by the apparent absence of the supermassive black hole at the center of the Abell 2261 galaxy cluster -- a monster that is estimated to weigh somewhere between 3 billion and 100 billion times the mass of the sun.

Read more
2020 Nobel Prize for physics goes to pioneering black hole scientists
This artist’s impression shows the central black hole and the galaxies trapped in its gas web.

There’s a black hole at the center of this year’s Nobel Prize for physics. Announced Tuesday, Oxford University mathematician Roger Penrose, Max Planck Institute for Extraterrestrial Physics astronomer Reinhard Genzel, and University of California, Los Angeles astronomer Andrea Ghez will share the 114th Nobel Prize for their pioneering work on the formation of black holes, and the discovery of a giant one at the heart of the Milky Way.

Black holes are regions of spacetime in which the gravity is so strong that not even light can escape from it. The boundary from which no escape is possible from a black hole is called an event horizon. The concept of objects with such significant gravitational fields was suggested as far back as the 18th century, although it took until the 20th century until the idea was considered in more detail. Albert Einstein’s theory of general relativity, for instance, showed that gravity is capable of changing the movement of light. In the 1960s, Penrose showed that black holes could appear generically, rather than as mathematical anomalies. Before this, experts -- including Einstein -- suggested that black holes don’t exist in physical reality.

Read more
Six galaxies trapped in cosmic web could explain supermassive black hole growth
This artist’s impression shows the central black hole and the galaxies trapped in its gas web.

Astronomers know that at the heart of most galaxies lies an enormous monster: A supermassive black hole, millions of times the mass of our sun. But they are still learning about how these beasts form and grow to such a large size.

Now, a group using the Very Large Telescope (VLT) has found a group of six galaxies trapped in a cosmic "spider's web" around a supermassive black hole, and investigating this oddity could help explain the formation of these colossal black holes.

Read more