Skip to main content

Gases around black holes form dynamic fountains, not rigid donuts

Recent research performed using observations from the Atacama Large Millimeter/submillimeter Array (ALMA) telescope in Chile and computer simulations is shedding light on the nature of black holes. The ALMA was used to observe supermassive black holes, and in particular the ring of gas that surrounds them. It was previously thought that these rings of gas formed a donut-type shape, with the black hole in the middle. But now it seems that the gases around the black hole are in constant circulation, forming a shape more like a water fountain than a donut.

Supermassive black holes are commonly found at the center of galaxies, providing a point around which other stars rotate. Researchers from the National Astronomical Observatory of Japan (NAOJ) wanted to know more about how matter moves around these black holes, and whether it falls into the black hole or builds up around the event horizon. To study this, they looked to the Circinus Galaxy, about 14 million light-years away from us, and observed a supermassive black hole located there.

Related Videos

The NAOJ team tested what was happening around the black hole by producing a computer simulation of how gases would fall towards a black hole, then comparing this simulation to the data from the Circinus Galaxy. They found that the gases did not form the expected rigid donut shape, but in fact formed a more dynamic structure which starts when colder gas falls towards the black hole, then this gas warms as it approaches the black hole, and some of this warmed gas is then expelled outwards away from the disk. This expelled gas then falls back towards the disk and the cycle begins again.

Artist’s impression of the gas motion around the supermassive black hole in the center of the Circinus Galaxy. The three gaseous components form the long-theorized “donut” structure: (1) a disk of infalling dense cold molecular gas, (2) outflowing hot atomic gas, and (3) gas returning to the disk. NAOJ

This finding shows that we were wrong to assume that the gases around black holes form a rigid donut structure, which could have a profound effect on our understanding of black holes in general. “Based on this discovery, we need to rewrite the astronomy textbooks,” said Takuma Izumi, a researcher at the National Astronomical Observatory of Japan (NAOJ).

Editors' Recommendations

Black holes all look like donuts, regardless of their size
The EHT Collaboration created a flurry of images of Sagittarius A*, using ray tracing, a technique that visualizes the properties of the black hole based on data collected with the radio telescope array and predictions made by Einstein's theory of general relativity. The images shown here were created by UArizona's Chi-kwan Chan.

The release of a remarkable image of the black hole at the center of our galaxy isn't only an incredible scientific achievement -- it also agrees precisely with predictions about what black holes are and how these strange objects are formed by the power of gravity.

The black hole, called Sagittarius A*, is a type called a supermassive black hole, which is found at the center of almost all galaxies. Ours is on the smaller end for such giants: At 4.3 million times the mass of the sun, it's much smaller than other monsters like the one is Messier 87 which was imaged in 2019 and which is 6.5 billion times the mass of the sun.

Read more
See first-ever image of monstrous black hole at the heart of the Milky Way
This is the first image of Sagittarius A* (or Sgr A* for short), the supermassive black hole at the centre of our galaxy. It’s the first direct visual evidence of the presence of this black hole. It was captured by the Event Horizon Telescope (EHT), an array which linked together eight existing radio observatories across the planet to form a single “Earth-sized” virtual telescope. The telescope is named after the “event horizon”, the boundary of the black hole beyond which no light can escape.

The Event Horizon Telescope (EHT) project, which famously captured the first-ever image of a black hole in 2019, has done it again -- this time capturing an image of a black hole within our own galaxy.

They have released an image of the enormous supermassive black hole at the center of the Milky Way, called Sagittarius A* or Sgr A* (pronounced "sadge-ay-star"). This monster black hole has a mass 4.3 million times the mass of the sun -- though that makes it considerably smaller than the black hole previously imaged at the heart of Messier 87, which was calculated to be an almost incomprehensible 6.5 billion times the mass of the sun.

Read more
See NASA’s visualizations of black holes for Black Hole Week
This image shows the warped view of a larger supermassive black hole (red) when it passes almost directly behind a companion black hole (blue) with half its mass. The gravity of the foreground black hole transforms its partner into a surreal collection of arcs.

We're coming to the end of Black Hole Week, NASA's celebration of the beastly cosmic monsters which suck in light, matter, and everything else that comes too close to them. But just because they eat light doesn't mean black holes are impossible to imagine. As part of the festivities, the media department at NASA's Goddard Space Flight Center has shared a selection of some of the best visualizations of black holes, so you can get an idea of what these mind-bending phenomena are like.

The images, which are also available as desktop and mobile wallpapers should you wish to decorate your devices with black hole imagery, show simulations and visualizations created to try and picture what the weird effects of the extreme gravitational forces around a black hole would be. They include a simulation of a binary system consisting of two interacting black holes:

Read more