Skip to main content

Researchers come up with new method to ‘see’ dark matter

Scientists know that just over a quarter of all that exists in the universe is in the form of dark matter, something we can’t see directly. We know that dark matter must be there because of the ways that galaxies move, which shows they have a lot more mass than we can observe. So we call the remaining unknown mass dark matter.

But how do you study something you can’t see? The next generation of dark matter instruments will use new techniques and extremely accurate hardware to measure the movements of distant galaxies. But for now, a small group of astronomers from the Swinburne University of Technology have come up with a way to “see” dark matter using current telescopes.

Recommended Videos

The method works by looking for the gravitational effects of dark matter, rather than the presumed particles themselves. “It’s like looking at a flag to try to know how much wind there is,” lead author Pol Gurri explained in a statement. “You cannot see the wind, but the flag’s motion tells you how strongly the wind is blowing.”

Artist's impression of a galaxy surrounded by gravitational distortions due to dark matter. Galaxies live inside larger concentrations of invisible dark matter (coloured purple in this image), however the dark matter's effects can be seen by looking at the deformations of background galaxies.
Artist’s impression of a galaxy surrounded by gravitational distortions due to dark matter. Galaxies live inside larger concentrations of invisible dark matter (colored purple in this image), however the dark matter’s effects can be seen by looking at the deformations of background galaxies. Swinburne Astronomy Productions - James Josephides

The research uses a technique called weak gravitational lensing, in which they observe distant galaxies and wait for another galaxy to pass between it and us. When this happens, the in-between galaxy bends the light waves from the distant galaxy due to its gravity. “The dark matter will very slightly distort the image of anything behind it,” explained Associate Professor Edward Taylor, who was also involved in the research. “The effect is a bit like reading a newspaper through the base of a wine glass.”

This technique has been used before to investigate dark matter. But it usually requires highly accurate telescopes, which measure the shape of the distant galaxies. The team’s innovation was to look at how galaxies rotate instead.

“Because we know how stars and gas are supposed to move inside galaxies, we know roughly what that galaxy should look like,” Gurri said. “By measuring how distorted the real galaxy images are, then we can figure out how much dark matter it would take to explain what we see.”

This means that even older telescopes, like the ANU 2.3m Telescope in Australia, can be used to “see” dark matter, in a more accurate way than if they were not looking at rotation.

“With our new way of seeing the dark matter,” Gurri said, “we hope to get a clearer picture of where the dark matter is, and what role it plays in how galaxies form.”

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
See planets being born in new images from the Very Large Telescope
This composite image shows the MWC 758 planet-forming disc, located about 500 light-years away in the Taurus region, as seen with two different facilities. The yellow colour represents infrared observations obtained with the Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) instrument on ESO’s Very Large Telescope (VLT). The blue regions on the other hand correspond to observations performed with the Atacama Large Millimeter/submillimeter Array (ALMA).

Astronomers have used the Very Large Telescope to peer into the disks of matter from which exoplanets form, looking at more than 80 young stars to see which may have planets forming around them. This is the largest study to date on these planet-forming disks, which are often found within the same huge clouds of dust and gas that stars form within.

A total of 86 young stars were studied in three regions known to host star formation: Taurus and Chamaeleon I, each located around 600 light-years away, and Orion, a famous stellar nursery located around 1,600 light-years away. The researchers took images of the disks around the stars, looking at their structures for clues about how different types of planets can form.

Read more
See 19 gorgeous face-on spiral galaxies in new James Webb data
This collection of 19 face-on spiral galaxies from the NASA/ESA/CSA James Webb Space Telescope in near- and mid-infrared light is at once overwhelming and awe-inspiring. Webb’s NIRCam (Near-Infrared Camera) captured millions of stars in these images. Older stars appear blue here, and are clustered at the galaxies’ cores. The telescope’s MIRI (Mid-Infrared Instrument) observations highlight glowing dust, showing where it exists around and between stars – appearing in shades of red and orange. Stars that haven’t yet fully formed and are encased in gas and dust appear bright red.

A stunning new set of images from the James Webb Space Telescope illustrates the variety of forms that exist within spiral galaxies like our Milky Way. The collection of 19 images shows a selection of spiral galaxies seen from face-on in the near-infrared and mid-infrared wavelengths, highlighting the similarities and differences that exist across these majestic celestial objects.

“Webb’s new images are extraordinary,” said Janice Lee of the Space Telescope Science Institute, in a statement. “They’re mind-blowing even for researchers who have studied these same galaxies for decades. Bubbles and filaments are resolved down to the smallest scales ever observed, and tell a story about the star formation cycle.”

Read more
See the dramatic, volcanic moon Io in new Juno images
This image revealing the north polar region of the Jovian moon Io was taken on October 15 by NASA’s Juno. Three of the mountain peaks visible in the upper part of image, near the day-night dividing line, were observed here for the first time by the spacecraft’s JunoCam.

NASA's Juno spacecraft recently made a close flyby of the solar system's most volcanic body, the Jovian moon of Io. During the flyby, the spacecraft came within 1,000 miles of Io, which is the closest any craft has come to the moon within the last 20 years.

During its flyby, the spacecraft snapped images using its JunoCam instrument, and some of those images are now publicly available.

Read more