Skip to main content

Astronomers discover ‘Jupiter’s identical twin’ exoplanet

The Kepler Space Telescope may have been retired in 2018, but data from the mission is still being used to make new discoveries. Recently, an international team of astronomers used data from the mission to identify a new planet that is remarkably similar to Jupiter but is located almost 17,000 light-years away.

The planet, named K2-2016-BLG-0005Lb, was discovered by sifting through Kepler data collected in 2016. It is almost exactly the same mass as Jupiter, and it is located similarly far from its star as Jupiter is to the sun. That makes it, as the authors of the study write, “a close Jupiter analogue.”

Related Videos
Artist's illustration of the Kepler spacecraft telescope imaging a planet.
Illustration of the Kepler spacecraft telescope. NASA

As the planet is so far away, it was difficult to see it and its observation was only possible thanks to an alignment of a large-mass object between the planet and us. This technique is called gravitational lensing, and it allows astronomers to see distant objects with the intermediate objects acting as magnifying glasses.

“To see the effect at all requires almost perfect alignment between the foreground planetary system and a background star,” explained Dr. Eamonn Kerins, Principal Investigator for the Science and Technology Facilities Council (STFC) grant that funded the work, in a statement. “The chance that a background star is affected this way by a planet is tens to hundreds of millions to one against. But there are hundreds of millions of stars towards the center of our Galaxy. So Kepler just sat and watched them for three months.”

The fact that it was possible to find a planet using Kepler data in this way is surprising, as Kepler was designed to find planets primarily using a different method called the transit method. This looks out for small dips in a star’s brightness caused by a planet passing between us and the star. Kepler discovered more than 2,600 exoplanets in this way during its tenure.

Regarding the latest discovery, Kerins compared Kepler to upcoming missions like NASA’s Nancy Grace Roman Space Telescope and the European Space Agency’s Euclid space telescope: “Kepler was never designed to find planets using microlensing so, in many ways, it’s amazing that it has done so. Roman and Euclid, on the other hand, will be optimized for this kind of work. They will be able to complete the planet census started by Kepler.”

Further study of exoplanets is important not only to learn about far-off systems but also to learn about our own solar system and how planets here might have formed. With future exoplanet hunters, Kerins says, “We’ll learn how typical the architecture of our own solar system is. The data will also allow us to test our ideas of how planets form. This is the start of a new exciting chapter in our search for other worlds.”

The research has been submitted to the journal Monthly Notices of the Royal Astronomical Society and is available to view on pre-print archive

Editors' Recommendations

Amateur astronomer spots dwarf galaxy that computers missed
Right in the middle of this image taken with the NASA/ESA Hubble Space Telescope, nestled among a smattering of distant stars and even more distant galaxies, lies the newly discovered dwarf galaxy known as Donatiello II. If you can’t quite discern Donatiello II’s clump of faint stars in this image, then you are in good company. Donatiello II is one of three newly discovered galaxies. All three were missed by an algorithm designed to search astronomical data for potential galaxy candidates. Even the best algorithms have their limitations when it comes to distinguishing very faint galaxies from individual stars and background noise. In such challenging situations, identification must be done the old-fashioned way – by a dedicated human trawling through the data themselves.

As machine learning approaches get more and more sophisticated, they are increasingly used in astronomy for difficult tasks like spotting dim and distant galaxy clusters. It can be tremendously helpful to have computers search through astronomical data to look for particular objects as they can process a huge amount of data -- however, there are some judgments that still require the human touch.

This week's image from the Hubble Space Telescope shows an object that was spotted by a human even after it had been missed by a computer algorithm. The dwarf galaxy Donatiello II is very faint and hard to pick out from the background behind it, but an amateur astronomer was able to point it out.

Read more
Astronomers create most accurate map yet of all the matter in the universe
The Blanco Telescope dome at the Cerro Tololo Inter-American Observatory in Chile, where the Dark Energy Camera used for the recently completed Dark Energy Survey was housed.

Of all the questions facing astronomers today, some of the biggest unknowns are about the stuff that makes up most of the universe. We know that the ordinary matter we see all around us makes up just 5% of all that exists, while the rest is made up of dark matter and dark energy. But because dark matter doesn't interact with light, it is extremely hard to study -- we have to infer its existence and position from looking at the way it interacts with the ordinary matter around it.

The Victor M. Blanco Telescope dome at the Cerro Tololo Inter-American Observatory in Chile, where the Dark Energy Camera used for the recently completed Dark Energy Survey is housed. Reidar Hahn, Fermilab

Read more
Scientists discover monster 17-pound meteorite in Antarctica
The researchers with their 16.7-pound find. White helmet: Maria Schönbächler. Green helmet: Maria Valdes. Black helmet: Ryoga Maeda. Orange helmet: Vinciane Debaille.

A team of researchers working in Antarctica have discovered a massive meteorite, weighing in at a hefty 17 pounds. Rocks falling to Earth from space aren't uncommon, but it's very unusual for such a large one to be found. Studying such meteorites can help scientists learn about early conditions in the solar system and even about how planets form.

The researchers found a total of five meteorites, including the gigantic 17-pounder. Antarctica is an inhospitable place for humans but a great location for meteorite hunting, thanks to its combination of dry climate and snowy conditions, which make it easier to spot dark hunks of rocks.

Read more