Skip to main content

Astronomers discover ‘Jupiter’s identical twin’ exoplanet

The Kepler Space Telescope may have been retired in 2018, but data from the mission is still being used to make new discoveries. Recently, an international team of astronomers used data from the mission to identify a new planet that is remarkably similar to Jupiter but is located almost 17,000 light-years away.

The planet, named K2-2016-BLG-0005Lb, was discovered by sifting through Kepler data collected in 2016. It is almost exactly the same mass as Jupiter, and it is located similarly far from its star as Jupiter is to the sun. That makes it, as the authors of the study write, “a close Jupiter analogue.”

Artist's illustration of the Kepler spacecraft telescope imaging a planet.
Illustration of the Kepler spacecraft telescope. NASA

As the planet is so far away, it was difficult to see it and its observation was only possible thanks to an alignment of a large-mass object between the planet and us. This technique is called gravitational lensing, and it allows astronomers to see distant objects with the intermediate objects acting as magnifying glasses.

Recommended Videos

“To see the effect at all requires almost perfect alignment between the foreground planetary system and a background star,” explained Dr. Eamonn Kerins, Principal Investigator for the Science and Technology Facilities Council (STFC) grant that funded the work, in a statement. “The chance that a background star is affected this way by a planet is tens to hundreds of millions to one against. But there are hundreds of millions of stars towards the center of our Galaxy. So Kepler just sat and watched them for three months.”

Please enable Javascript to view this content

The fact that it was possible to find a planet using Kepler data in this way is surprising, as Kepler was designed to find planets primarily using a different method called the transit method. This looks out for small dips in a star’s brightness caused by a planet passing between us and the star. Kepler discovered more than 2,600 exoplanets in this way during its tenure.

Regarding the latest discovery, Kerins compared Kepler to upcoming missions like NASA’s Nancy Grace Roman Space Telescope and the European Space Agency’s Euclid space telescope: “Kepler was never designed to find planets using microlensing so, in many ways, it’s amazing that it has done so. Roman and Euclid, on the other hand, will be optimized for this kind of work. They will be able to complete the planet census started by Kepler.”

Further study of exoplanets is important not only to learn about far-off systems but also to learn about our own solar system and how planets here might have formed. With future exoplanet hunters, Kerins says, “We’ll learn how typical the architecture of our own solar system is. The data will also allow us to test our ideas of how planets form. This is the start of a new exciting chapter in our search for other worlds.”

The research has been submitted to the journal Monthly Notices of the Royal Astronomical Society and is available to view on pre-print archive arXiv.org.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
Scientists discover a baby exoplanet ‘just’ 3 million years old
An artist's depiction of the system showing the host star, transiting planet, misaligned transition disk, and wide binary companion (in the background).

It's rare that 3 million years old would be considered young, but that's the case for a recently discovered exoplanet. The study of planets outside our solar system, called exoplanets, has exploded in the last decade with more than 5,000 confirmed discoveries to date. But most of those are older, fully mature planets comparable in age to the Earth, which is around 4.5 billion years old.

Recently, though, astronomers using NASA's Transiting Exoplanet Survey Satellite (TESS) found a planetary baby, which is the youngest transiting planet discovered so far. It is called transiting because it was spotted when it passed in front of its host star, in an event called a transit, which astronomers can spot by looking for dips in brightness from the star.

Read more
Scientists find evidence of hellish, volcanic moon orbiting a distant exoplanet
This artist’s concept depicts a potential volcanic moon between the exoplanet WASP-49 b, left, and its parent star. New evidence indicating that a massive sodium cloud observed near WASP-49 b is produced by neither the planet nor the star has prompted researchers to ask if its origin could be an exomoon.

We know there are thousands of planets beyond our solar system, called exoplanets. And scientists are pretty sure that many of these planets must also host moons, called exomoons. But because moons are so tiny and dim compared to planets and stars, there has never been a confirmed discovery of an exomoon. Now, though, scientists have uncovered evidence of an exomoon, and it appears to be a hellish and volcanic place.

The possible moon is in orbit around WASP-49 b, a gas giant located over 600 light-years away that orbits its star so closely that a year there lasts just 2.8 days. The evidence for the moon comes in the form of a cloud of sodium that appears to be moving slightly differently from the planet, suggesting it could be linked to its own body.

Read more
Europa Clipper blasts off to study whether Jupiter’s icy moon could host life
A SpaceX Falcon Heavy rocket carrying NASA’s Europa Clipper spacecraft lifts off from Launch Complex 39A at NASA’s Kennedy Space Center in Florida at 12:06 p.m. EDT on Monday, Oct. 14, 2024.

NASA has launched another deep space mission -- this one to explore an icy moon of Jupiter and study whether it could potentially be habitable. The Europa Clipper mission launched using a SpaceX Falcon Heavy at 12:06 p.m. ET today, Monday October 14, from Launch Complex 39A at Kennedy Space Center in Florida, setting off on its long journey to the Jovian system.

"Liftoff, @EuropaClipper!" NASA Administrator Bill Nelson wrote on X.  "Today, we embark on a new journey across the solar system in search of the ingredients for life within Jupiter's icy moon. Our next chapter in space exploration has begun."

Read more