Skip to main content

Hubble shows a galaxy’s mirror image due to phenomenon of gravitational lensing

The Hubble Space Telescope is a constant source of beautiful pictures of the wonders of space, and this week’s Hubble image shows a wonderful example of a phenomenon called gravitational lensing, which helps scientists see incredibly distant galaxies. It shows the galaxy SGAS J143845+145407, which appears twice as if in a mirror.

If you’ve heard of gravitational lensing recently, it’s likely because the same phenomenon was also visible in the first deep field image shared from the James Webb Space Telescope. That image showed how extremely distant galaxies were visible due to the bending of spacetime caused by the gravity of galaxy cluster SMACS 0723.

Gravitational lensing has resulted in a mirror image of the galaxy near the center of this image, creating a captivating centerpiece. A third distorted image of the galaxy appears as a bridge between them.
This intriguing observation from the NASA/ESA Hubble Space Telescope shows a gravitationally lensed galaxy with the long-winded identification SGAS J143845+145407. Gravitational lensing has resulted in a mirror image of the galaxy near the center of this image, creating a captivating centerpiece. A third distorted image of the galaxy appears as a bridge between them. ESA/Hubble & NASA, J. Rigby

This Hubble image shows a different version of the same phenomenon. There are three types of gravitational lensing, which occurs when we look at a very massive body like a galaxy cluster that has very strong gravity that warps spacetime and bends light coming from behind it. The first type of gravitational lensing is called microlensing, when an object’s brightness is temporarily increased, and that is useful for detecting exoplanets. The second type seen in the James Webb image is called weak gravitational lensing, when the distant galaxies are seen as stretched because their light is bent by gravity.

But there’s an even more extreme version of this which happens when the foreground object is more massive or the background object is closer, which is called strong gravitational lensing. That’s what is visible in this Hubble image when gravitational lensing has caused the galaxy near the center of the image to appear mirrored, so you see two versions of it.

“Hubble has a special flair for detecting lensed galaxies,” Hubble scientists write. “The telescope’s sensitivity and crystal-clear vision let it see faint and distant gravitational lenses that ground-based telescopes cannot detect because of the blurring effect of Earth’s atmosphere. Hubble was the first telescope to resolve details within lensed images of galaxies and is capable of imaging both their shape and internal structure.”

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Hubble snaps an image of dark spokes in Saturn’s rings
This photo of Saturn was taken by NASA's Hubble Space Telescope on October 22, 2023, when the ringed planet was approximately 850 million miles from Earth. Hubble's ultra-sharp vision reveals a phenomenon called ring spokes. Saturn's spokes are transient features that rotate along with the rings. Their ghostly appearance only persists for two or three rotations around Saturn. During active periods, freshly-formed spokes continuously add to the pattern.

The Hubble Space Telescope is investigating something strange about the beautiful rings around Saturn. You might picture Saturn's rings as perfectly smooth, but in fact, they have some strange dark spots that appear intermittently. These features, called spokes, look like dusty blots spread over the rings and appear for just a few rotations before disappearing again, with some periods having much more spoke activity than others.

These spokes were first observed over 40 years ago by the Voyager 2 spacecraft, but they continue to be something of a mystery. They seem to be linked to seasons on the planet, which are seven years long, and to the planet's magnetic field. A newly released image taken by Hubble in October this year shows the spokes as dark patches on the rings, observed as part of a program called Hubble's Outer Planets Atmospheres Legacy (OPAL), which tracks them as they move.

Read more
Hubble captures a formation of galaxies neatly lined up
An interacting galaxy system known as Arp-Madore 2105-332, that lies about 200 million light-years from Earth in the constellation Microscopium.

Sometimes, Hubble or other telescopes will capture two or more galaxies that are in the process of merging -- called interacting galaxies. These huge collisions can warp one or both of the galaxies, twisting them into strange shapes. The results of such collisions can be catastrophic, with one of the galaxies being destroyed. Or they can be creative, with one larger galaxy being formed from the two merging galaxies.

However, sometimes galaxies that appear very close in images are not actually interacting. Sometimes, they merely appear to be close when seen from Earth, but they can actually be thousands of light-years apart. That's the case with a previous Hubble image showing two overlapping galaxies.

Read more
Hubble Space Telescope is in safe mode due to a gyro problem
Hubble orbiting more than 300 miles above Earth as seen from the space shuttle.

The Hubble Space Telescope has experienced a problem with its hardware and is currently in safe mode, with science operations paused until the fault can be corrected. The problem is with one of the telescope's three operational gyros, which are used to control the direction in which the telescope points. When a fault like this is detected, the telescope automatically goes into a safe mode in which it performs only essential operations to prevent any damage to its hardware.

"The telescope automatically entered safe mode when one of its three gyroscopes gave faulty readings," NASA wrote in a statement. "The gyros measure the telescope’s turn rates and are part of the system that determines which direction the telescope is pointed. While in safe mode, science operations are suspended, and the telescope waits for new directions from the ground."

Read more