Skip to main content

See the universe in stunning detail in first James Webb image

After years of planning and months in space, the James Webb Space Telescope has inaugurated a new era in astronomy. NASA today released the first science image from the world’s most powerful space telescope, showing the infrared universe in a depth never seen before.

“From the beginning of history, humans have looked up to the night sky with wonder,” Vice President Kamala Harris said in a briefing. “Now, we enter a new phase of scientific discovery. Building on the legacy of Hubble, the James Webb Space Telescope allows us to see deeper into space than ever before and in stunning clarity.” Harris also acknowledged the contributions of international partners in the building of Webb, which included NASA, the European Space Agency, and the Canadian Space Agency: “This telescope is one of humanity’s great engineering achievements,” she said.

Known as Webb’s First Deep Field, this image of galaxy cluster SMACS 0723 is overflowing with detail.
This first image from NASA’s James Webb Space Telescope is the deepest and sharpest infrared image of the distant universe to date. Known as Webb’s First Deep Field, this image of galaxy cluster SMACS 0723 is overflowing with detail. Thousands of galaxies – including the faintest objects ever observed in the infrared – have appeared in Webb’s view for the first time. This slice of the vast universe covers a patch of sky approximately the size of a grain of sand held at arm’s length by someone on the ground. NASA, ESA, CSA, and STScI

The image shows galaxy cluster SMACS 0723 and is the deepest infrared image of the distant universe to date. It shows the cluster as it would have been 4.6 billion years ago, and because the mass of the cluster is so great it bends spacetime and allows us to see even more distant galaxies behind it. As they are so distant the light is very faint, and these thousands of galaxies are among the faintest objects ever observed in infrared — captured thanks to Webb’s NIRCam instrument in a composite of observations taken over 12.5 hours to pick up this level of detail.

Unlike telescopes like Hubble which look primarily in the visible light range, equivalent to what would be seen by the human eye, Webb’s instruments operate in the infrared. This enables the telescope to look through opaque targets like clouds of dust to see what lies beneath, and it will be used to study nebulae, stars, black holes, and more.

Webb’s instruments are so sensitive that they can observe extremely distant targets, which — because of the time it takes for light to travel from these great distances to Earth — is like looking back in time. Webb will search out some of the earliest galaxies in the universe, helping to elucidate a period called the Epoch of Reionization when the earliest stars spread light through the universe for the first time.

Deep field images like the one shown above help in the quest to find the earliest galaxies by identifying extremely distant galaxies in dim patches of the sky. Similar images will be produced by deep and wide surveys made using Webb, such as the upcoming COSMOS-Webb program.

The image released today is just a teaser of all that is to come from Webb. More images will be released tomorrow, including images of nebulae and a galaxy group, as well as a spectrum showing the composition of the atmosphere of an exoplanet. And there will be plenty more topics that Webb will study in its first year as well, giving astronomers glimpses into topics as wide-ranging as how stars are formed, the composition of comets in our solar system, and how the first black holes formed.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Hubble celebrates its 33rd birthday with stunning nebula image
Astronomers are celebrating the NASA/ESA Hubble Space Telescope’s 33rd launch anniversary with an ethereal photo of a nearby star-forming region, NGC 1333. The nebula is in the Perseus molecular cloud, and is located approximately 960 light-years away.

It will soon be the 33rd anniversary of the launch of the Hubble Space Telescope, and to celebrate this milestone, Hubble scientists have shared a stunning image taken by the telescope of a picturesque nebula. NGC 1333 is a busy stellar nursery, with new stars forming among the cloud of dust and gas located 960 light-years away.

The beautiful image of the nebula shows swirls of dark dust around glowing points of light where new stars are being born. To capture this scene, Hubble used its instruments across their full wavelengths, from ultraviolet through the optical light range and into the near-infrared. Hubble took the image using its Wide Field Camera 3 instrument, which used several filter across different wavelengths that were then assigned to colors (Blue: F475W, Green: F606W, Red: F657N and F814W) to create the colorful final result.

Read more
James Webb captures a stunning image of two galaxies merging
Shining like a brilliant beacon amidst a sea of galaxies, Arp 220 lights up the night sky in this view from NASA’s James Webb Space Telescope. Actually two spiral galaxies in the process of merging, Arp 220 glows brightest in infrared light, making it an ideal target for Webb. It is an ultra-luminous infrared galaxy (ULIRG) with a luminosity of more than a trillion suns. In comparison, our Milky Way galaxy has a much more modest luminosity of about ten billion suns.

The James Webb Space Telescope has captured a gorgeous image of a dramatic cosmic event: two galaxies colliding. The two spiral galaxies are in the process of merging, and are glowing brightly in the infrared wavelength in which James Webb operates, shining with the light of more than a trillion suns.

It is not uncommon for two (or more) galaxies to collide and merge, but the two pictured in this image are giving off particularly bright infrared light. The pair has a combined name, Arp 220, as they appear as a single object when viewed from Earth. Known as an ultraluminous infrared galaxy (ULIRG), Arp 220 glows far more brightly than a typical spiral galaxy like our Milky Way.

Read more
JUICE mission to Jupiter sends back first images of Earth from space
Shortly after launch on 14 April, ESA’s Jupiter Icy Moons Explorer, Juice, captured this stunning view of Earth. The coastline around the Gulf of Aden can be made out to the right of centre, with patchy clouds above land and sea.

The European Space Agency's Jupiter Icy Moons Explorer (JUICE) spacecraft, which launched last week, has sent back its first images from space -- and they are some stunning views of the Earth. The JUICE mission is on its way to explore three of Jupiter's largest moons -- Ganymede, Callisto, and Europa -- but it will be traveling for eight years before it arrives at the Jupiter system in 2031.

In the meantime, the spacecraft's cameras have been taking images pointed back at Earth. The images were captured shortly after launch on Friday, April 14, using JUICE's monitoring cameras. The two cameras are designed to watch over the spacecraft as it deploys rather than for scientific purposes, so they capture image at a relatively low resolution of 1024 x 1024 pixels. Even so, they managed to get some gorgeous views of the planet as JUICE speeds away from it.

Read more