Skip to main content

See the universe in stunning detail in first James Webb image

After years of planning and months in space, the James Webb Space Telescope has inaugurated a new era in astronomy. NASA today released the first science image from the world’s most powerful space telescope, showing the infrared universe in a depth never seen before.

“From the beginning of history, humans have looked up to the night sky with wonder,” Vice President Kamala Harris said in a briefing. “Now, we enter a new phase of scientific discovery. Building on the legacy of Hubble, the James Webb Space Telescope allows us to see deeper into space than ever before and in stunning clarity.” Harris also acknowledged the contributions of international partners in the building of Webb, which included NASA, the European Space Agency, and the Canadian Space Agency: “This telescope is one of humanity’s great engineering achievements,” she said.

Known as Webb’s First Deep Field, this image of galaxy cluster SMACS 0723 is overflowing with detail.
This first image from NASA’s James Webb Space Telescope is the deepest and sharpest infrared image of the distant universe to date. Known as Webb’s First Deep Field, this image of galaxy cluster SMACS 0723 is overflowing with detail. Thousands of galaxies – including the faintest objects ever observed in the infrared – have appeared in Webb’s view for the first time. This slice of the vast universe covers a patch of sky approximately the size of a grain of sand held at arm’s length by someone on the ground. NASA, ESA, CSA, and STScI

The image shows galaxy cluster SMACS 0723 and is the deepest infrared image of the distant universe to date. It shows the cluster as it would have been 4.6 billion years ago, and because the mass of the cluster is so great it bends spacetime and allows us to see even more distant galaxies behind it. As they are so distant the light is very faint, and these thousands of galaxies are among the faintest objects ever observed in infrared — captured thanks to Webb’s NIRCam instrument in a composite of observations taken over 12.5 hours to pick up this level of detail.

Unlike telescopes like Hubble which look primarily in the visible light range, equivalent to what would be seen by the human eye, Webb’s instruments operate in the infrared. This enables the telescope to look through opaque targets like clouds of dust to see what lies beneath, and it will be used to study nebulae, stars, black holes, and more.

Webb’s instruments are so sensitive that they can observe extremely distant targets, which — because of the time it takes for light to travel from these great distances to Earth — is like looking back in time. Webb will search out some of the earliest galaxies in the universe, helping to elucidate a period called the Epoch of Reionization when the earliest stars spread light through the universe for the first time.

Deep field images like the one shown above help in the quest to find the earliest galaxies by identifying extremely distant galaxies in dim patches of the sky. Similar images will be produced by deep and wide surveys made using Webb, such as the upcoming COSMOS-Webb program.

The image released today is just a teaser of all that is to come from Webb. More images will be released tomorrow, including images of nebulae and a galaxy group, as well as a spectrum showing the composition of the atmosphere of an exoplanet. And there will be plenty more topics that Webb will study in its first year as well, giving astronomers glimpses into topics as wide-ranging as how stars are formed, the composition of comets in our solar system, and how the first black holes formed.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Astronaut captures stunning images of a snowy Grand Canyon
A snow-covered Grand Canyon seen from space.

In the final days of his six-month stint aboard the International Space Station (ISS), Danish astronaut Andreas Mogensen took some time out of his science work to snap some striking photos of a snow-covered Grand Canyon.

The images were captured from the station in recent days as it orbited Earth at an altitude of around 250 miles.

Read more
This famous supernova remnant is hiding a secret
Webb’s NIRCam (Near-Infrared Camera) captured this detailed image of SN 1987A (Supernova 1987A). At the center, material ejected from the supernova forms a keyhole shape. Just to its left and right are faint crescents newly discovered by Webb. Beyond them an equatorial ring, formed from material ejected tens of thousands of years before the supernova explosion, contains bright hot spots. Exterior to that is diffuse emission and two faint outer rings. In this image blue represents light at 1.5 microns (F150W), cyan 1.64 and 2.0 microns (F164N, F200W), yellow 3.23 microns (F323N), orange 4.05 microns (F405N), and red 4.44 microns (F444W).

When massive stars reach the end of their lives and explode in a supernova, they can leave behind huge structures in space called supernova remnants. These are often favorite targets of astronomers because of their beautiful and distinctive shapes. They include the famous SN 1987A remnant that was imaged by the James Webb Space Telescope last year. Now, astronomers using Webb have peered closer at this remnant and found something special inside.

The SN 1987A supernova was first observed in 1987 (hence its name) and was bright enough to be seen with the naked eye, making it extremely recent by astronomical standards. Stars live for millions or even billions of years, so observing one coming to the end of its life in real time is a real scientific treat. When this star died, it created a kind of supernova called a core collapse, or Type II, in which the heart of the star runs out of fuel, causing it to collapse suddenly and violently. This collapse it so severe that the material rebounds and is thrown out in an explosion traveling up to a quarter of the speed of light.

Read more
James Webb photographs two potential exoplanets orbiting white dwarfs
Illustration of a cloudy exoplanet and a disk of debris orbiting a white dwarf star.

Even though scientists have now discovered more than 5,000 exoplanets, or planets outside our solar system, it's a rare thing that any telescope can take an image of one of these planets. That's because they are so small and dim compared to the stars that they orbit around that it's easier to detect their presence based on their effects on the star rather than them being detected directly.

However, thanks to its exceptional sensitivity, the James Webb Space Telescope was recently able to image two potential exoplanets orbiting around small, cold cores of dead stars called white dwarfs directly.

Read more