Skip to main content

Here’s what the James Webb Space Telescope will study in its first year

Artist's impression of the James Webb Space Telescope
Artist’s impression of the James Webb Space Telescope ESA/ATG medialab

The Hubble Space Telescope is a beloved scientific institution, but at more than 20 years old it’s getting rather long in the tooth. That’s why NASA, the European Space Agency (ESA), and the Canadian Space Agency (CSA) are joining forces to create the James Webb Space Telescope, a cutting-edge astronomy instrument that is set to launch later this year.

The instruments on board James Webb will enable science discoveries beyond anything possible right now, such as looking at exoplanets to see if they have atmospheres and whether any might be like Earth.

But exoplanet atmospheres aren’t the only topic that Webb will be researching. This week, NASA officials have announced the roster of scientific programs which the telescope will study in its first year. This includes programs to research how stars are formed, research into the climate and composition of bodies like planets and comets within our own solar system, and even programs to study the formation of the universe itself by looking for the earliest galaxies.

“The initial year of Webb’s observations will provide the first opportunity for a diverse range of scientists around the world to observe particular targets with NASA’s next great space observatory,” said Dr. Thomas Zurbuchen, Associate Administrator for the Science Mission Directorate at NASA in a statement. “The amazing science that will be shared with the global community will be audacious and profound.”

All of these programs will be a part of Cycle 1, which is the name for the first year of the telescope’s science operations. In total 266 proposals were selected from a highly competitive pool of thousands, as many more researchers would like time on the telescope than is available. The committee in charge of the selection had to whittle down the proposals to the most scientifically valuable, and they ended up awarding 6,000 hours of time on the telescope to the various projects.

“We are opening the infrared treasure chest, and surprises are guaranteed,” said Dr. John C. Mather, Senior Project Scientist for the Webb mission and Senior Astrophysicist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “How did the universe make galaxies, stars, black holes, and planets, and our own very special little Earth? I don’t know yet, but we are getting closer every day.”

You can see a full list of all the programs planned for Webb’s first year of operations here.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
James Webb snaps an image of the famous and beautiful Crab Nebula
NASA’s James Webb Space Telescope has gazed at the Crab Nebula in the search for answers about the supernova remnant’s origins. Webb’s NIRCam (Near-Infrared Camera) and MIRI (Mid-Infrared Instrument) have revealed new details in infrared light.

Located 6,500 light-years away, the Crab Nebula is famous among astronomers for its elaborate and beautiful structure. A new image from the James Webb Space Telescope shows off the gorgeous nebula as seen in the infrared wavelength, highlighting the filaments of dust that create its cage-like shape.

The nebula is a supernova remnant, the result of a massive star that exploded at the end of its life centuries ago. The supernova was observed on Earth in 1054 CE, and since then astronomers have watched the nebula that resulted from that explosion grow and change.

Read more
James Webb observes merging stars creating heavy elements
This image from Webb’s NIRCam (Near-Infrared Camera) instrument highlights GRB 230307A’s kilonova and its former home galaxy among their local environment of other galaxies and foreground stars. The neutron stars were kicked out of their home galaxy and travelled the distance of about 120,000 light-years, approximately the diameter of the Milky Way galaxy, before finally merging several hundred million years later.

In its earliest stages, the universe was composed mostly of hydrogen and helium. All of the other, heavier elements that make up the universe around us today were created over time, and it is thought that they were created primarily within stars. Stars create heavy elements within them in the process of fusion, and when these stars reach the ends of their lives they may explode in supernovas, spreading these elements in the environment around them.

That's how heavier elements like those up to iron are created. But for the heaviest elements, the process is thought to be different. These are created not within stellar cores, but in extreme environments such as the merging of stars, when massive forces create exceedingly dense environments that forge new elements.

Read more
Researchers discover a 320-mph jet stream around Jupiter’s equator
This image of Jupiter from NASA’s James Webb Space Telescope’s NIRCam (Near-Infrared Camera) shows stunning details of the majestic planet in infrared light. In this image, brightness indicates high altitude. The numerous bright white "spots" and "streaks" are likely very high-altitude cloud tops of condensed convective storms. Auroras, appearing in red in this image, extend to higher altitudes above both the northern and southern poles of the planet. By contrast, dark ribbons north of the equatorial region have little cloud cover. In Webb’s images of Jupiter from July 2022, researchers recently discovered a narrow jet stream traveling 320 miles per hour (515 kilometers per hour) sitting over Jupiter’s equator above the main cloud decks.

The James Webb Space Telescope might be best known for its study of extremely distant galaxies, but it is also used for research on targets closer to home, like planets within our solar system. Last year, the telescope captured a stunning image of Jupiter as seen in the infrared wavelength, and now scientists who have been working on this data have published some of their findings about the planet -- including a brand-new feature that they identified in its atmosphere.

This image of Jupiter from NASA’s James Webb Space Telescope’s NIRCam (Near-Infrared Camera) shows stunning details of the majestic planet in infrared light. In Webb’s images of Jupiter from July 2022, researchers recently discovered a narrow jet stream traveling 320 miles per hour (515 kilometers per hour) sitting over Jupiter’s equator above the main cloud decks. NASA, ESA, CSA, STScI, Ricardo Hueso (UPV), Imke de Pater (UC Berkeley), Thierry Fouchet (Observatory of Paris), Leigh Fletcher (University of Leicester), Michael H. Wong (UC Berkeley), Joseph DePasquale (STScI)

Read more