Skip to main content

Here’s what the James Webb Space Telescope will study in its first year

Artist's impression of the James Webb Space Telescope
Artist’s impression of the James Webb Space Telescope ESA/ATG medialab

The Hubble Space Telescope is a beloved scientific institution, but at more than 20 years old it’s getting rather long in the tooth. That’s why NASA, the European Space Agency (ESA), and the Canadian Space Agency (CSA) are joining forces to create the James Webb Space Telescope, a cutting-edge astronomy instrument that is set to launch later this year.

The instruments on board James Webb will enable science discoveries beyond anything possible right now, such as looking at exoplanets to see if they have atmospheres and whether any might be like Earth.

But exoplanet atmospheres aren’t the only topic that Webb will be researching. This week, NASA officials have announced the roster of scientific programs which the telescope will study in its first year. This includes programs to research how stars are formed, research into the climate and composition of bodies like planets and comets within our own solar system, and even programs to study the formation of the universe itself by looking for the earliest galaxies.

“The initial year of Webb’s observations will provide the first opportunity for a diverse range of scientists around the world to observe particular targets with NASA’s next great space observatory,” said Dr. Thomas Zurbuchen, Associate Administrator for the Science Mission Directorate at NASA in a statement. “The amazing science that will be shared with the global community will be audacious and profound.”

All of these programs will be a part of Cycle 1, which is the name for the first year of the telescope’s science operations. In total 266 proposals were selected from a highly competitive pool of thousands, as many more researchers would like time on the telescope than is available. The committee in charge of the selection had to whittle down the proposals to the most scientifically valuable, and they ended up awarding 6,000 hours of time on the telescope to the various projects.

“We are opening the infrared treasure chest, and surprises are guaranteed,” said Dr. John C. Mather, Senior Project Scientist for the Webb mission and Senior Astrophysicist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “How did the universe make galaxies, stars, black holes, and planets, and our own very special little Earth? I don’t know yet, but we are getting closer every day.”

You can see a full list of all the programs planned for Webb’s first year of operations here.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
James Webb provides a second view of an exploded star
A new high-definition image from NASA’s James Webb Space Telescope’s NIRCam (Near-Infrared Camera) unveils intricate details of supernova remnant Cassiopeia A (Cas A), and shows the expanding shell of material slamming into the gas shed by the star before it exploded. The most noticeable colors in Webb’s newest image are clumps of bright orange and light pink that make up the inner shell of the supernova remnant. These tiny knots of gas, comprised of sulfur, oxygen, argon, and neon from the star itself, are only detectable by NIRCam’s exquisite resolution, and give researchers a hint at how the dying star shattered like glass when it exploded.

When massive stars run out of fuel and come to the ends of their lives, their final phase can be a massive explosion called a supernova. Although the bright flash of light from these events quickly fades, other effects are longer-lasting. As the shockwaves from these explosions travel out into space and interact with nearby dust and gas, they can sculpt beautiful objects called supernova remnants.

One such supernova remnant, Cassiopeia A, or Cas A, was recently imaged using the James Webb Space Telescope's NIRCam instrument. Located 11,000 light-years away in the constellation of Cassiopeia, it is thought to be a star that exploded 340 years ago (as seen from Earth) and it is now one of the brightest radio objects in the sky. This view shows the shell of material thrown out by the explosion interacting with the gas that the massive star gave off in its last phases of life.

Read more
James Webb telescope captures a dramatic image of newborn star
The NASA/ESA/CSA James Webb Space Telescope reveals intricate details of the Herbig Haro object 797 (HH 797). Herbig-Haro objects are luminous regions surrounding newborn stars (known as protostars), and are formed when stellar winds or jets of gas spewing from these newborn stars form shockwaves colliding with nearby gas and dust at high speeds. HH 797, which dominates the lower half of this image, is located close to the young open star cluster IC 348, which is located near the eastern edge of the Perseus dark cloud complex. The bright infrared objects in the upper portion of the image are thought to host two further protostars. This image was captured with Webb’s Near-InfraRed Camera (NIRCam).

A new image of a Herbig-Haro object captured by the James Webb Space Telescope shows the dramatic outflows from a young star. These luminous flares are created when stellar winds shoot off in opposite directions from newborn stars, as the jets of gas slam into nearby dust and gas at tremendous speed. These objects can be huge, up to several light-years across, and they glow brightly in the infrared wavelengths in which James Webb operates.

This image shows Herbig-Haro object HH 797, which is located close to the IC 348 star cluster, and is also nearby to another Herbig-Haro object that Webb captured recently: HH 211.

Read more
James Webb finds that rocky planets could form in extreme radiation environment
This is an artist’s impression of a young star surrounded by a protoplanetary disk in which planets are forming.

It takes a particular confluence of conditions for rocky planets like Earth to form, as not all stars in the universe are conducive to planet formation. Stars give off ultraviolet light, and the hotter the star burns, the more UV light it gives off. This radiation can be so significant that it prevents planets from forming from nearby dust and gas. However, the James Webb Space Telescope recently investigated a disk around a star that seems like it could be forming rocky planets, even though nearby massive stars are pumping out huge amounts of radiation.

The disk of material around the star, called a protoplanetary disk, is located in the Lobster Nebula, one of the most extreme environments in our galaxy. This region hosts massive stars that give off so much radiation that they can eat through a disk in as little as a million years, dispersing the material needed for planets to form. But the recently observed disk, named XUE 1, seems to be an exception.

Read more