Skip to main content

James Webb captures Jupiter’s moons and rings in infrared

The James Webb Space Telescope has made headlines this week with its ability to look deeper into the universe than ever before, but it will also be used to look at some targets closer to home. As well as distant galaxies and far-off exoplanets, Webb will also be used to investigate objects right here in our solar system — and one of the first research projects it will be used for will study Jupiter and its rings and moons.

Now, NASA and its partners, the European Space Agency and the Canadian Space Agency, have demonstrated how capable Webb is of studying Jupiter by releasing the first images it has taken of targets in our solar system. The images show the iconic stripes of Jupiter as seen in the infrared, and also show up some of the moons of Jupiter like Europa which is clearly visible below:

Jupiter, center, and its moon Europa, left, are seen through the James Webb Space Telescope’s NIRCam instrument 2.12 micron filter.
Jupiter, center, and its moon Europa, left, are seen through the James Webb Space Telescope’s NIRCam instrument 2.12-micron filter. NASA, ESA, CSA, and B. Holler and J. Stansberry (STScI)

“Combined with the deep field images released the other day, these images of Jupiter demonstrate the full grasp of what Webb can observe, from the faintest, most distant observable galaxies to planets in our own cosmic backyard that you can see with the naked eye from your actual backyard,” said one of the researchers who worked on the images, Bryan Holler of the Space Telescope Science Institute, in a statement.

All of these images were taken using Webb’s NIRCam instrument, but with different filters which pick out different features. In the 3.2- micron filter on the right below, for example, you can more clearly see the moons Metis and Thebe as well as the larger and brighter Europa.

Left: Jupiter, center, and its moons Europa, Thebe, and Metis are seen through the James Webb Space Telescope’s NIRCam instrument 2.12 micron filter. Right: Jupiter and Europa, Thebe, and Metis are seen through NIRCam’s 3.23 micron filter.
Left: Jupiter, center, and its moons Europa, Thebe, and Metis are seen through the James Webb Space Telescope’s NIRCam instrument 2.12-micron filter. Right: Jupiter and Europa, Thebe, and Metis are seen through NIRCam’s 3.23-micron filter. NASA, ESA, CSA, and B. Holler and J. Stansberry (STScI)

“I couldn’t believe that we saw everything so clearly, and how bright they were,” said Stefanie Milam, Webb’s deputy project scientist for planetary science. “It’s really exciting to think of the capability and opportunity that we have for observing these kinds of objects in our solar system.”

One image even managed to capture Jupiter’s rarely-seen rings, which were observed using a longer wavelength filter:

Jupiter and some of its moons are seen through NIRCam’s 3.23 micron filter.
Jupiter and some of its moons are seen through NIRCam’s 3.23-micron filter. NASA, ESA, CSA, and B. Holler and J. Stansberry (STScI)

The variety of features picked up in these images promise great things about Webb’s potential to investigate targets here in our solar system — even more than the researchers had hoped.

“The Jupiter images in the narrow-band filters were designed to provide nice images of the entire disk of the planet, but the wealth of additional information about very faint objects (Metis, Thebe, the main ring, hazes) in those images with approximately one-minute exposures was absolutely a very pleasant surprise,” said John Stansberry, NIRCam commissioning lead at the Space Telescope Science Institute.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
James Webb provides a second view of an exploded star
A new high-definition image from NASA’s James Webb Space Telescope’s NIRCam (Near-Infrared Camera) unveils intricate details of supernova remnant Cassiopeia A (Cas A), and shows the expanding shell of material slamming into the gas shed by the star before it exploded. The most noticeable colors in Webb’s newest image are clumps of bright orange and light pink that make up the inner shell of the supernova remnant. These tiny knots of gas, comprised of sulfur, oxygen, argon, and neon from the star itself, are only detectable by NIRCam’s exquisite resolution, and give researchers a hint at how the dying star shattered like glass when it exploded.

When massive stars run out of fuel and come to the ends of their lives, their final phase can be a massive explosion called a supernova. Although the bright flash of light from these events quickly fades, other effects are longer-lasting. As the shockwaves from these explosions travel out into space and interact with nearby dust and gas, they can sculpt beautiful objects called supernova remnants.

One such supernova remnant, Cassiopeia A, or Cas A, was recently imaged using the James Webb Space Telescope's NIRCam instrument. Located 11,000 light-years away in the constellation of Cassiopeia, it is thought to be a star that exploded 340 years ago (as seen from Earth) and it is now one of the brightest radio objects in the sky. This view shows the shell of material thrown out by the explosion interacting with the gas that the massive star gave off in its last phases of life.

Read more
James Webb telescope captures a dramatic image of newborn star
The NASA/ESA/CSA James Webb Space Telescope reveals intricate details of the Herbig Haro object 797 (HH 797). Herbig-Haro objects are luminous regions surrounding newborn stars (known as protostars), and are formed when stellar winds or jets of gas spewing from these newborn stars form shockwaves colliding with nearby gas and dust at high speeds. HH 797, which dominates the lower half of this image, is located close to the young open star cluster IC 348, which is located near the eastern edge of the Perseus dark cloud complex. The bright infrared objects in the upper portion of the image are thought to host two further protostars. This image was captured with Webb’s Near-InfraRed Camera (NIRCam).

A new image of a Herbig-Haro object captured by the James Webb Space Telescope shows the dramatic outflows from a young star. These luminous flares are created when stellar winds shoot off in opposite directions from newborn stars, as the jets of gas slam into nearby dust and gas at tremendous speed. These objects can be huge, up to several light-years across, and they glow brightly in the infrared wavelengths in which James Webb operates.

This image shows Herbig-Haro object HH 797, which is located close to the IC 348 star cluster, and is also nearby to another Herbig-Haro object that Webb captured recently: HH 211.

Read more
James Webb finds that rocky planets could form in extreme radiation environment
This is an artist’s impression of a young star surrounded by a protoplanetary disk in which planets are forming.

It takes a particular confluence of conditions for rocky planets like Earth to form, as not all stars in the universe are conducive to planet formation. Stars give off ultraviolet light, and the hotter the star burns, the more UV light it gives off. This radiation can be so significant that it prevents planets from forming from nearby dust and gas. However, the James Webb Space Telescope recently investigated a disk around a star that seems like it could be forming rocky planets, even though nearby massive stars are pumping out huge amounts of radiation.

The disk of material around the star, called a protoplanetary disk, is located in the Lobster Nebula, one of the most extreme environments in our galaxy. This region hosts massive stars that give off so much radiation that they can eat through a disk in as little as a million years, dispersing the material needed for planets to form. But the recently observed disk, named XUE 1, seems to be an exception.

Read more