Skip to main content

James Webb will investigate targets in our cosmic backyard

With the James Webb Space Telescope getting ready to begin science operations this summer, the researchers who will be using Webb are preparing for their science campaigns as well. Included in the objects Webb will be studying, as well as distant galaxies and far-off stars, are targets right here in our own solar system, as Heidi Hammel, Webb interdisciplinary scientist for solar system observations, explained in a recent NASA blog post.

“I am really excited about Webb’s upcoming first year of science operations!” Hammel writes. “I lead a team of equally excited astronomers eager to begin downloading data. Webb can detect the faint light of the earliest galaxies, but my team will be observing much closer to home. They will use Webb to unravel some of the mysteries that abound in our own solar system.”

Given how powerful the Webb telescope is, it may seem surprising that it is being used to look relatively close to home, in our cosmic backyard. But by observing targets in the solar system, researchers can test the limits of Webb’s capabilities, such as its ability to detect faint light sources (like Jupiter’s rings) which are close to bright light sources (like Jupiter). So not only can we learn about bodies in the solar system, but researchers can also find out more about what kinds of science they can use Webb for in the future.

And there are plenty of examples of missions that can look far afield being used to look in the solar system, like the Hubble Space Telescope which has imaged Jupiter in stunning detail and is used to observe the outer planets, some of which don’t have dedicated missions of their own.

So Webb will look at a variety of targets in the solar system when it begins science operations this summer, as Hammel explains: “Our programs will observe objects across the solar system: We will image the giant planets and Saturn’s rings; explore many Kuiper Belt Objects; analyze the atmosphere of Mars; execute detailed studies of Titan; and much more! There are also other teams planning observations; in its first year, 7% of Webb’s time will be focused on objects within our solar system.”

Included in the planned observations is a study of Jupiter’s moon Europa, which has some intriguing water activity in its environment. Europa is a promising location for searching for habitable worlds beyond Earth as it has a liquid ocean beneath an icy crust, and researchers have observed plumes of water vapor being thrown up from beneath the surface there. Webb will take high-resolution images of Europa to look at its surface and hunt these plumes. If a plume is observed, Webb’s spectroscopy instruments can see what its chemical composition is by seeing what wavelengths of light are absorbed.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
James Webb captures image of the most distant star ever discovered
A massive galaxy cluster called WHL0137-08 contains the most strongly magnified galaxy known in the universe’s first billion years: the Sunrise Arc, and within that galaxy, the most distant star ever detected, nicknamed Earendel.

The James Webb Space Telescope has captured a stunning image of the most distant star ever discovered. Discovered by Hubble in 2020, the star named Earendel is located an astonishing 28 billion light-years away. While in the previous Hubble image, the star was only visible as a small blob, these new observations from Webb are detailed enough to reveal information about the star like its type and information about the galaxy in which it resides.

The Webb image shows a galaxy cluster called WHL0137-08, which is so massive that it bends spacetime and acts like a magnifying glass for the more distant galaxies behind it. Some of these distant galaxies being magnified include one called the Sunrise Arc, which hosts Earendel. The Sunrise Arc is located near the end of one of the spikes from the bright central star, at around the five o'clock position. A zoomed-in version of the image shows the Arc and Earendel within t.

Read more
Scientists explain cosmic ‘question mark’ spotted by Webb space telescope
The shape of a question mark captured by the James Webb Space Telescope.

Considering the myriad of unknowns that still exist for scientists exploring the vastness of the universe, the recent discovery in deep space of what seems to be a giant question mark feels highly appropriate.

Captured by the powerful James Webb Space Telescope, the bright, distinctive object clearly bears the shape of a question mark, leaving some stargazers wondering if the cosmos is teasing us, or perhaps motivating us to keep on searching the depths of space for the secrets that it may reveal.

Read more
James Webb telescope captures the gorgeous Ring Nebula in stunning detail
JWST/NIRcam composite image of the Ring Nebula. The images clearly show the main ring, surrounded by a faint halo and with many delicate structures. The interior of the ring is filled with hot gas. The star which ejected all this material is visible at the very centre. It is extremely hot, with a temperature in excess of 100,000 degrees. The nebula was ejected only about 4000 years ago. Technical details: The image was obtained with JWST's NIRCam instrument on August 4, 2022. Images in three different filters were combined to create this composite image: F212N (blue); F300M (green); and F335M (red).

A new image from the James Webb Space Telescope shows the stunning and distinctive Ring Nebula -- a gorgeous structure of dust and gas located in the constellation of Lyra. This nebula is a favorite among sky watchers as it faces toward Earth so we can see its beautiful structure, and because it is visible throughout the summer from the Northern Hemisphere. It is different from the Southern Ring nebula, which Webb has also imaged, but both are a type of object called a planetary nebula.

Located just 2,600 light-years away, the Ring Nebula is a structure of dust and gas that was first observed in the 1770s, when it was thought to be something like a planet. With advances in technology, astronomers realized it was not a planet, but rather a cloud of dust and gas, and thanks to highly detailed observations by space telescopes like Hubble and Webb, scientists have been able to see more of its complex structure. The nebula isn't a simple sphere or blob, but is rather a central, football-shaped structure surrounded by rings of different material.

Read more