Skip to main content

James Webb will investigate targets in our cosmic backyard

With the James Webb Space Telescope getting ready to begin science operations this summer, the researchers who will be using Webb are preparing for their science campaigns as well. Included in the objects Webb will be studying, as well as distant galaxies and far-off stars, are targets right here in our own solar system, as Heidi Hammel, Webb interdisciplinary scientist for solar system observations, explained in a recent NASA blog post.

“I am really excited about Webb’s upcoming first year of science operations!” Hammel writes. “I lead a team of equally excited astronomers eager to begin downloading data. Webb can detect the faint light of the earliest galaxies, but my team will be observing much closer to home. They will use Webb to unravel some of the mysteries that abound in our own solar system.”

Given how powerful the Webb telescope is, it may seem surprising that it is being used to look relatively close to home, in our cosmic backyard. But by observing targets in the solar system, researchers can test the limits of Webb’s capabilities, such as its ability to detect faint light sources (like Jupiter’s rings) which are close to bright light sources (like Jupiter). So not only can we learn about bodies in the solar system, but researchers can also find out more about what kinds of science they can use Webb for in the future.

And there are plenty of examples of missions that can look far afield being used to look in the solar system, like the Hubble Space Telescope which has imaged Jupiter in stunning detail and is used to observe the outer planets, some of which don’t have dedicated missions of their own.

So Webb will look at a variety of targets in the solar system when it begins science operations this summer, as Hammel explains: “Our programs will observe objects across the solar system: We will image the giant planets and Saturn’s rings; explore many Kuiper Belt Objects; analyze the atmosphere of Mars; execute detailed studies of Titan; and much more! There are also other teams planning observations; in its first year, 7% of Webb’s time will be focused on objects within our solar system.”

Included in the planned observations is a study of Jupiter’s moon Europa, which has some intriguing water activity in its environment. Europa is a promising location for searching for habitable worlds beyond Earth as it has a liquid ocean beneath an icy crust, and researchers have observed plumes of water vapor being thrown up from beneath the surface there. Webb will take high-resolution images of Europa to look at its surface and hunt these plumes. If a plume is observed, Webb’s spectroscopy instruments can see what its chemical composition is by seeing what wavelengths of light are absorbed.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
James Webb photographs two potential exoplanets orbiting white dwarfs
Illustration of a cloudy exoplanet and a disk of debris orbiting a white dwarf star.

Even though scientists have now discovered more than 5,000 exoplanets, or planets outside our solar system, it's a rare thing that any telescope can take an image of one of these planets. That's because they are so small and dim compared to the stars that they orbit around that it's easier to detect their presence based on their effects on the star rather than them being detected directly.

However, thanks to its exceptional sensitivity, the James Webb Space Telescope was recently able to image two potential exoplanets orbiting around small, cold cores of dead stars called white dwarfs directly.

Read more
See 19 gorgeous face-on spiral galaxies in new James Webb data
This collection of 19 face-on spiral galaxies from the NASA/ESA/CSA James Webb Space Telescope in near- and mid-infrared light is at once overwhelming and awe-inspiring. Webb’s NIRCam (Near-Infrared Camera) captured millions of stars in these images. Older stars appear blue here, and are clustered at the galaxies’ cores. The telescope’s MIRI (Mid-Infrared Instrument) observations highlight glowing dust, showing where it exists around and between stars – appearing in shades of red and orange. Stars that haven’t yet fully formed and are encased in gas and dust appear bright red.

A stunning new set of images from the James Webb Space Telescope illustrates the variety of forms that exist within spiral galaxies like our Milky Way. The collection of 19 images shows a selection of spiral galaxies seen from face-on in the near-infrared and mid-infrared wavelengths, highlighting the similarities and differences that exist across these majestic celestial objects.

“Webb’s new images are extraordinary,” said Janice Lee of the Space Telescope Science Institute, in a statement. “They’re mind-blowing even for researchers who have studied these same galaxies for decades. Bubbles and filaments are resolved down to the smallest scales ever observed, and tell a story about the star formation cycle.”

Read more
James Webb snaps a stunning stellar nursery in a nearby satellite galaxy
This image from the NASA/ESA/CSA James Webb Space Telescope features an H II region in the Large Magellanic Cloud (LMC), a satellite galaxy of our Milky Way. This nebula, known as N79, is a region of interstellar atomic hydrogen that is ionised, captured here by Webb’s Mid-InfraRed Instrument (MIRI).

A stunning new image from the James Webb Space Telescope shows a star-forming region in the nearby galaxy of the Large Magellanic Cloud. Our Milky Way galaxy has a number of satellite galaxies, which are smaller galaxies gravitationally bound to our own, the largest of which is the Large Magellanic Cloud or LMC.

The image was taken using Webb's Mid-Infrared Instrument or MIRI, which looks at slightly longer wavelengths than its other three instruments which operate in the near-infrared. That means MIRI is well suited to study things like the warm dust and gas found in this region in a nebula called N79.

Read more