Skip to main content

Go on a ‘Grand Tour’ of the outer solar system with these Hubble images

The planets in our solar system aren’t static. Like Earth, the other planets also experience seasonal variations with atmospheric changes occurring throughout the year. That’s why each year the Hubble Space Telescope snaps images of the outer planets of our solar system — Jupiter, Saturn, Uranus, and Neptune — so astronomers can see how they are changing over time.

The NASA/ESA Hubble Space Telescope has completed its annual grand tour of the outer Solar System for 2021. This is the realm of the giant planets — Jupiter, Saturn, Uranus, and Neptune — extending as far as 30 times the distance between Earth and the Sun. Unlike the rocky terrestrial planets like Earth and Mars that huddle close to the Sun’s warmth, these far-flung worlds are mostly composed of chilly gaseous soups of hydrogen, helium, ammonia, and methane around a packed, intensely hot, compact core. Note: The planets are not shown to scale in this image.
The NASA/ESA Hubble Space Telescope has completed its annual grand tour of the outer Solar System for 2021. Note: The planets are not shown to scale in this image. Image used with permission by copyright holder

The images of this year’s “Grand Tour” of the outer solar system have just been released and they show the gas giants and ice giants which are so different from the inner, rocky planets of Mercury, Venus, Earth, and Mars. These outer planets are much larger, and because they are so much further from the sun — the farthest, Neptune, orbits at a distance 30 times the distance between Earth and the sun — they are also extremely cold. They are composed of different materials too, being made up of what the European Space Agency describes as, “chilly gaseous soups of hydrogen, helium, ammonia, methane, and other trace gases around a packed, intensely hot, compact core.”

This year’s images show the ever-changing atmosphere of Jupiter, in which new storms regularly appear and form shapes called barges. Another feature shown in the image is the “Red Spot Jr.,” a smaller spot that has appeared beneath Jupiter’s famous Great Red Spot.

“Every time we get new data down, the image quality and detail in the cloud features always blow me away,” said Amy Simon of the Goddard Space Flight Center in Greenbelt, Maryland. “It strikes me when I look at Jupiter, in the barges or in the red band right below, you can see cloud structures that are clearly much deeper. We’re seeing a lot of structure here and vertical depth variation.”

Saturn is approaching autumn in its northern hemisphere, where there are color changes in its bands, and in the southern hemisphere, you can see the remnants of winter in the blue color around the planet’s southern pole.

“This is something we can best do with Hubble. With Hubble’s high resolution, we can narrow things down to which band is actually changing,” said Michael Wong of the University of California, Berkeley. “If you were to look at this through a ground-based telescope, there’s some blurring with our atmosphere, and you’ll lose some of those color variations. Nothing from the ground will get visible-light images as sharp as Hubble’s.”

Finally, Uranus and Neptune show changes too, with the bright northern pole of Neptune caused by ultraviolet radiation and a darkened northern hemisphere of Uranus and a dark spot that moves around the planet.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Hubble observes a galaxy that hosted an epic supernova explosion
The tranquil spiral galaxy UGC 12295.

This week's image from the Hubble Space Telescope shows a stunning view of a spiral galaxy called UGC 12295, located nearly 200 million light-years away. This galaxy appears face-on from Earth, meaning we can get a great view of its structure and spiral arms -- captured here using Hubble's Wide Field Camera 3 instrument.

The galaxy UGC 12295 is best known for being the location of a supernova observed in 2015. A supernova occurs when a massive star, much bigger than our sun, runs out of fuel and comes to the end of its life. As the star has less and less fuel and no longer produces as much outward pressure from the fusion occurring at its core, the gravity pushing in on the star takes over and causes the star to collapse. This collapse happens so fast that it creates a shockwave that causes the star's outer layers to explode, an event called a supernova.

Read more
Hubble image shows a lonely star glowing over an irregular background galaxy
The bright star BD+17 2217. Arp 263 – also known as NGC 3239 in the foreground and irregular galaxy Arp 263 in the background.

This week's image from the Hubble Space Telescope is notable for the way it was composed as much as for the object it shows. Composed of two different exposures which have been merged, it shows the star BD+17 2217 shining over the background irregular galaxy Arp 263.

Irregular galaxies are those with irregular structures, unlike elliptical galaxies or spiral galaxies such as our Milky Way. Arp 263 is patchy and cloudy, with some areas glowing brightly due to star formation while other areas appear practically bare. Such galaxies are typically formed due to interactions with other galaxies, which can occur when a massive galaxy passes by and pulls the original galaxy out of shape. In the case of Arp 263, it is thought that it developed its irregular shape when two galaxies merged.

Read more
Hubble observes a cluster of boulders around impacted asteroid Dimorphos
A NASA/ESA Hubble Space Telescope image of the asteroid Dimorphos taken on 19 December 2022.

Last year, NASA deliberately crashed a spacecraft into an asteroid, in a first-of-its-kind test of planetary defense. At the time, telescopes around the world including the Hubble Space Telescope observed the impact between the DART spacecraft and the Dimorphos asteroid, capturing footage of the plumes of dust thrown up. Now, Hubble has observed Dimorphos once again and seen that a number of boulders have been ejected from the asteroid.

The Hubble image shown below was taken on 19 December 2022, around four months after the impact, and shows the bright streak of the asteroid across the sky, surrounded by small boulders which were knocked loose during the impact. This view was only possible after several months as the impact initially sent up large amounts of dust which made it difficult to see the asteroid in detail.

Read more