Skip to main content

This is Jupiter as you’ve never seen it before

The groundbreaking James Webb Space Telescope is peering farther into deep space than any observatory that has gone before, but it’s also producing breathtaking images of celestial bodies closer to home.

Take this awesome shot of Jupiter, for example.

Jupiter, captured by the James Webb Space Telescope.
NASA, ESA, CSA, Jupiter ERS Team; image processing by Ricardo Hueso (UPV/EHU) and Judy Schmidt.

Captured by the Webb telescope’s Near-Infrared Camera (NIRCam), the image highlights gorgeous auroras extending to high altitudes above both the northern and southern poles of the planet.

The infrared light captured by the camera is invisible to the human eye, so the Webb team — working with citizen scientist Judy Schmidt — mapped the data in a way to make the details stand out. This explains why Jupiter’s distinctive Great Red Spot — a storm system described as “so big it could swallow Earth” — appears as white in the image.

The captured images are clearly way beyond what the Webb team had been hoping for.

“We hadn’t really expected it to be this good, to be honest … it’s really remarkable,” planetary astronomer Imke de Pater, who helped lead the observation, said in a post on NASA’s website.

After further analysis of the extraordinary image, Heidi Hammel, Webb interdisciplinary scientist for solar system observations, noted: “The brightness here indicates high altitude — so the Great Red Spot has high-altitude hazes, as does the equatorial region. The numerous bright white ‘spots’ and ‘streaks’ are likely very high-altitude cloud tops of condensed convective storms.”

In a wider image (below) captured by the Webb telescope, two tiny moons called Amalthea and Adrastea are visible.

Jupiter and its surroundings, captured by the James Webb Space Telescope.
NASA, ESA, CSA, Jupiter ERS Team; image processing by Ricardo Hueso (UPV/EHU) and Judy Schmidt.

After launching from Earth in December 2021, the Webb telescope — the most powerful ever built — is now in an orbit around a million miles away. NASA and its partners in Europe and Canada recently shared the first set of high-resolution color images from a mission that scientists believe could tell us more about the origins of the universe. It’s also searching for distant planets that could support life.

Other dazzling images captured by Webb include this this stunner showing the Cartwheel Galaxy located around 500 million light-years away in the Sculptor constellation.

Editors' Recommendations

Trevor Mogg
Contributing Editor
Not so many moons ago, Trevor moved from one tea-loving island nation that drives on the left (Britain) to another (Japan)…
James Webb captures a stunning image of two galaxies merging
Shining like a brilliant beacon amidst a sea of galaxies, Arp 220 lights up the night sky in this view from NASA’s James Webb Space Telescope. Actually two spiral galaxies in the process of merging, Arp 220 glows brightest in infrared light, making it an ideal target for Webb. It is an ultra-luminous infrared galaxy (ULIRG) with a luminosity of more than a trillion suns. In comparison, our Milky Way galaxy has a much more modest luminosity of about ten billion suns.

The James Webb Space Telescope has captured a gorgeous image of a dramatic cosmic event: two galaxies colliding. The two spiral galaxies are in the process of merging, and are glowing brightly in the infrared wavelength in which James Webb operates, shining with the light of more than a trillion suns.

It is not uncommon for two (or more) galaxies to collide and merge, but the two pictured in this image are giving off particularly bright infrared light. The pair has a combined name, Arp 220, as they appear as a single object when viewed from Earth. Known as an ultraluminous infrared galaxy (ULIRG), Arp 220 glows far more brightly than a typical spiral galaxy like our Milky Way.

Read more
James Webb captures stunning image of supernova remnant Cassiopeia A
Cassiopeia A (Cas A) is a supernova remnant located about 11,000 light-years from Earth in the constellation Cassiopeia. It spans approximately 10 light-years. This new image uses data from Webb’s Mid-Infrared Instrument (MIRI) to reveal Cas A in a new light.

A stunning new image from the James Webb Space Telescope shows a famous supernova remnant called Cassiopeia A, or Cas A. When a massive star comes to the end of its life and explodes in a huge outpouring of light and energy called a supernova, it leaves behind a dense core that can become a black hole or a neutron star. But that's not all that remains after a supernova: the explosion can leave its mark on nearby clouds of dust and gas that are formed into intricate structures.

The image of Cas A was taken using Webb's MIRI instrument, which looks in the mid-infrared range. Located 11,000 light-years away, Cassiopeia A is one of the brightest objects in the sky in the radio wavelength, and is also visible in the optical, infrared, and X-ray wavelengths. To see the different features picked up in different wavelengths, you can look at the slider comparison of the Webb infrared image alongside a Hubble visible light image of the same object.

Read more
James Webb captures the rarely-seen rings around Uranus
This zoomed-in image of Uranus, captured by Webb’s Near-Infrared Camera (NIRCam) on 6 February 2023, reveals stunning views of the planet’s rings. The planet displays a blue hue in this representative-colour image, made by combining data from two filters (F140M, F300M) at 1.4 and 3.0 microns, shown here as blue and orange, respectively.

The James Webb Space Telescope spends much of its time peering out into distant regions of space searching for some of the earliest galaxies to exist, but it also occasionally turns its sights onto targets a little closer to home. Following up on its image of Neptune released last year, astronomers using Webb have just released a brand-new image of Uranus as you've never seen it before.

As Webb looks in the infrared wavelength, unlike telescopes like Hubble which look in the visible light spectrum, its image of Uranus picks out some features of the planet which are hard to see otherwise like its dusty rings. Uranus' rings are almost invisible in the optical wavelength, but in this new image, they stand out proudly.

Read more