Skip to main content

Check out Webb telescope’s most amazing image yet

The gloriously powerful James Webb Space Telescope may well take us forward in our ongoing quest to learn more about the universe and our origins, but sometimes it’s worth simply marveling at the stunning imagery that the observatory is sending home as part of its groundbreaking mission.

Take this extraordinary view shared by NASA on Tuesday, August 2, captured by one of Webb’s powerful infrared cameras. It shows the Cartwheel Galaxy in all its breathtaking beauty, the patterns, colors, and shape a sight to behold.

The Cartwheel Galaxy captured by the James Webb Space Telescope.
A large pink, speckled galaxy resembling a wheel with a small, inner oval, with dusty blue in between on the right, with two smaller spiral galaxies about the same size to the left against a black background. NASA, ESA, CSA, STScI

Located some 500 million light-years away in the Sculptor constellation, NASA describes the Cartwheel Galaxy as a “rare sight.” It dominates the image, with two companion galaxies also visible against a backdrop of many others.

“Its appearance, much like that of the wheel of a wagon, is the result of an intense event — a high-speed collision between a large spiral galaxy and a smaller galaxy not visible in this image,” NASA says. “Collisions of galactic proportions cause a cascade of different, smaller events between the galaxies involved [and] the Cartwheel is no exception.”

In a post on its website, the space agency points out the Cartwheel Galaxy’s two rings — a bright inner ring and an outer, colorful ring. “These two rings expand outwards from the center of the collision, like ripples in a pond after a stone is tossed into it. Because of these distinctive features, astronomers call this a ‘ring galaxy,’ a structure less common than spiral galaxies like our Milky Way.”

The dazzling core holds a huge amount of hot dust, and the brightest spots indicate enormous young star clusters. The outer ring, meanwhile, has expanded for around 440 million years, and as it does so it plows into surrounding gas, leading to the formation of yet more stars.

NASA notes that existing space-based observatories such as the Hubble Space Telescope have already had the Cartwheel within its sights, but Webb, with its ability to detect infrared light, has been able to offer more detailed views of the distant galaxy.

For example, Webb’s primary imager, the Near-Infrared Camera (NIRCam), has been able to highlight even more stars than previously observed in visible light. “This is because young stars, many of which are forming in the outer ring, are less obscured by the presence of dust when observed in infrared light,” the agency explains.

Meanwhile, data from Webb’s Mid-Infrared Instrument (MIRI) appear in red in the image. The spiraling spokes that form the Cartwheel Galaxy’s skeleton are areas with an abundance of hydrocarbons and other chemical compounds, and also silicate dust. “These spokes are evident in previous Hubble observations released in 2018, but they become much more prominent in this Webb image,” NASA says.

Webb’s observations confirm that while the Cartwheel was probably similar in appearance to the Milky Way before its collision, it is now in what NASA describes as “a very transitory stage.”

Following its launch in December 2021, the James Webb Space Telescope is now in an orbit about a million miles from Earth. Last month NASA shared the first set of high-resolution, color images from what is the most powerful space observatory ever built. And just like this one of the Cartwheel Galaxy, they didn’t disappoint.

Editors' Recommendations

Trevor Mogg
Contributing Editor
Not so many moons ago, Trevor moved from one tea-loving island nation that drives on the left (Britain) to another (Japan)…
James Webb captures a unique view of Uranus’s ring system
This image of Uranus from NIRCam (Near-Infrared Camera) on NASA’s James Webb Space Telescope shows the planet and its rings in new clarity. The Webb image exquisitely captures Uranus’s seasonal north polar cap, including the bright, white, inner cap and the dark lane in the bottom of the polar cap. Uranus’ dim inner and outer rings are also visible in this image, including the elusive Zeta ring—the extremely faint and diffuse ring closest to the planet.

A festive new image from the James Webb Space Telescope has been released, showing the stunning rings of Uranus. Although these rings are hard to see in the visible light wavelength -- which is why you probably don't think of Uranus as having rings like Saturn -- these rings shine out brightly in the infrared wavelength that Webb's instruments operate in.

The image was taken using Webb's NIRCam instrument and shows the rings in even more detail than a previous Webb image of Uranus, which was released earlier this year.

Read more
James Webb spots tiniest known brown dwarf in stunning star cluster
The central portion of the star cluster IC 348. Astronomers combed the cluster in search of tiny, free-floating brown dwarfs.

A new image from the James Webb Space Telescope shows a stunning view of a star cluster that contains some of the smallest brown dwarfs ever identified. A brown dwarf, also sometimes known as a failed star, is an object halfway between a star and a planet -- too big to be a planet but not large enough to sustain the nuclear fusion that defines a star.

It may sound surprising, but the definition of when something stops being a planet and starts being a star is, in fact, a little unclear. Brown dwarfs differ from planets in that they form like stars do, collapsing due to gravity, but they don't sustain fusion, and their size can be comparable to large planets. Researchers study brown dwarfs to learn about what makes the difference between these two classes of objects.

Read more
James Webb provides a second view of an exploded star
A new high-definition image from NASA’s James Webb Space Telescope’s NIRCam (Near-Infrared Camera) unveils intricate details of supernova remnant Cassiopeia A (Cas A), and shows the expanding shell of material slamming into the gas shed by the star before it exploded. The most noticeable colors in Webb’s newest image are clumps of bright orange and light pink that make up the inner shell of the supernova remnant. These tiny knots of gas, comprised of sulfur, oxygen, argon, and neon from the star itself, are only detectable by NIRCam’s exquisite resolution, and give researchers a hint at how the dying star shattered like glass when it exploded.

When massive stars run out of fuel and come to the ends of their lives, their final phase can be a massive explosion called a supernova. Although the bright flash of light from these events quickly fades, other effects are longer-lasting. As the shockwaves from these explosions travel out into space and interact with nearby dust and gas, they can sculpt beautiful objects called supernova remnants.

One such supernova remnant, Cassiopeia A, or Cas A, was recently imaged using the James Webb Space Telescope's NIRCam instrument. Located 11,000 light-years away in the constellation of Cassiopeia, it is thought to be a star that exploded 340 years ago (as seen from Earth) and it is now one of the brightest radio objects in the sky. This view shows the shell of material thrown out by the explosion interacting with the gas that the massive star gave off in its last phases of life.

Read more