Skip to main content

Gorgeous images show off James Webb telescope’s remarkable abilities

If yesterday’s deep field image got you excited for the James Webb Space Telescope, there’s a veritable feast of space images on offer today. NASA has released four more images showing off the capabilities of the world’s most powerful space telescope and giving a taster of what science it will be able to perform in the future.

First up is a stunning image of the Carina Nebula, nicknamed the Cosmic Cliffs for its mountainous shapes. This cloud of dust and gas is a star-forming region that is lit up by bright young stars. These huge, hot young stars give off stellar winds which shape the gas into these stunning structures, and studying the region can help to learn about how common these young stars are and how they influence star formation around them. The nebula is located 7,600 light-years away and was captured using two of Webb’s cameras, NIRCam and MIRI.

This landscape of “mountains” and “valleys” speckled with glittering stars is actually the edge of a nearby, young, star-forming region called NGC 3324 in the Carina Nebula.
This landscape of “mountains” and “valleys” speckled with glittering stars is actually the edge of a nearby, young, star-forming region called NGC 3324 in the Carina Nebula. Captured in infrared light by NASA’s new James Webb Space Telescope, this image reveals for the first time previously invisible areas of star birth. NASA, ESA, CSA, and STScI

The second image is a quintet of galaxies locked into a cosmic dance. Four of the five members of the galaxy group Stephan’s Quintet are extremely close together and are in the process of merging, giving scientists information about how galaxies grow larger and evolve over time. This is Webb’s largest image so far, covering a huge area in an image of over 150 million pixels. The closest galaxy of the group is located 40 million light-years away, while the other four are much more distant at 290 million light-years away.

Stephan’s Quintet, imaged by the James Webb Space Telescope.
Stephan’s Quintet, a visual grouping of five galaxies, is best known for being prominently featured in the holiday classic film, “It’s a Wonderful Life.” Today, NASA’s James Webb Space Telescope reveals Stephan’s Quintet in a new light. This enormous mosaic is Webb’s largest image to date, covering about one-fifth of the Moon’s diameter. It contains over 150 million pixels and is constructed from almost 1,000 separate image files. The information from Webb provides new insights into how galactic interactions may have driven galaxy evolution in the early universe. NASA, ESA, CSA, and STScI

This striking structure is called the Southern Ring Nebula and is a type of nebula that is formed by a dying star throwing off layers of dust and gas. This dust and gas spreads out into space and forms a huge shell, which makes it hard to see the structure of the nebula in the visible light range. But in the infrared wavelength, where Webb operates, it is possible to peer inside the dusty shell and see the nebula beneath. This image shows how imaging the same structure in different wavelengths can bring out different features of an object, as the image on the left was taken in the near-infrared by Webb’s NIRCam, and the image on the right was taken in the mid-infrared by Webb’s MIRI instrument.

Two stars imaged by the James Webb telescope. The stars – and their layers of light – are prominent in the image from Webb’s Near-Infrared Camera (NIRCam) on the left, while the image from Webb’s Mid-Infrared Instrument (MIRI) on the right shows for the first time that the second star is surrounded by dust.
Two stars, which are locked in a tight orbit, shape the local landscape. Webb’s infrared images feature new details in this complex system. The stars – and their layers of light – are prominent in the image from Webb’s Near-Infrared Camera (NIRCam) on the left, while the image from Webb’s Mid-Infrared Instrument (MIRI) on the right shows for the first time that the second star is surrounded by dust. The brighter star is in an earlier stage of its stellar evolution and will probably eject its own planetary nebula in the future. NASA, ESA, CSA, and STScI

Finally, the last treat from Webb today is not an image but a spectrum, or an analysis of the light coming from a distant planet. Using spectroscopy, Webb was able to determine that water is present in the atmosphere of the superhot planet WASP-96 b. This gas giant orbits so close to its star that a year there lasts just three and a half Earth days, and it is estimated to have a surface temperature of over 1000°F. Before Webb, it was extremely difficult to analyze the atmospheres of exoplanets so the ability to detect gas molecules in an exoplanet atmosphere is a major step forward in planetary science.

A chart demonstrating the atmospheric composition of Hot Gas Giant Exoplanet WASP-96b.
NASA’s James Webb Space Telescope has captured the distinct signature of water, along with evidence for clouds and haze, in the atmosphere surrounding a hot, puffy gas giant planet orbiting a distant Sun-like star. NASA, ESA, CSA, and STScI

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
James Webb captures a stunning image of two galaxies merging
Shining like a brilliant beacon amidst a sea of galaxies, Arp 220 lights up the night sky in this view from NASA’s James Webb Space Telescope. Actually two spiral galaxies in the process of merging, Arp 220 glows brightest in infrared light, making it an ideal target for Webb. It is an ultra-luminous infrared galaxy (ULIRG) with a luminosity of more than a trillion suns. In comparison, our Milky Way galaxy has a much more modest luminosity of about ten billion suns.

The James Webb Space Telescope has captured a gorgeous image of a dramatic cosmic event: two galaxies colliding. The two spiral galaxies are in the process of merging, and are glowing brightly in the infrared wavelength in which James Webb operates, shining with the light of more than a trillion suns.

It is not uncommon for two (or more) galaxies to collide and merge, but the two pictured in this image are giving off particularly bright infrared light. The pair has a combined name, Arp 220, as they appear as a single object when viewed from Earth. Known as an ultraluminous infrared galaxy (ULIRG), Arp 220 glows far more brightly than a typical spiral galaxy like our Milky Way.

Read more
Machine learning used to sharpen the first image of a black hole
A team of researchers, including an astronomer with NSF’s NOIRLab, has developed a new machine-learning technique to enhance the fidelity and sharpness of radio interferometry images. To demonstrate the power of their new approach, which is called PRIMO, the team created a new, high-fidelity version of the iconic Event Horizon Telescope's image of the supermassive black hole at the center of Messier 87, a giant elliptical galaxy located 55 million light-years from Earth. The image of the M87 supermassive black hole originally published by the EHT collaboration in 2019 (left); and a new image generated by the PRIMO algorithm using the same data set (right).

The world watched in delight when scientists revealed the first-ever image of a black hole in 2019, showing the huge black hole at the center of galaxy Messier 87. Now, that image has been refined and sharpened using machine learning techniques. The approach, called PRIMO or principal-component interferometric modeling, was developed by some of the same researchers that worked on the original Event Horizon Telescope project that took the photo of the black hole.

That image combined data from seven radio telescopes around the globe which worked together to form a virtual Earth-sized array. While that approach was amazingly effective at seeing such a distant object located 55 million light-years away, it did mean that there were some gaps in the original data. The new machine learning approach has been used to fill in those gaps, which allows for a more sharp and more precise final image.

Read more
James Webb captures stunning image of supernova remnant Cassiopeia A
Cassiopeia A (Cas A) is a supernova remnant located about 11,000 light-years from Earth in the constellation Cassiopeia. It spans approximately 10 light-years. This new image uses data from Webb’s Mid-Infrared Instrument (MIRI) to reveal Cas A in a new light.

A stunning new image from the James Webb Space Telescope shows a famous supernova remnant called Cassiopeia A, or Cas A. When a massive star comes to the end of its life and explodes in a huge outpouring of light and energy called a supernova, it leaves behind a dense core that can become a black hole or a neutron star. But that's not all that remains after a supernova: the explosion can leave its mark on nearby clouds of dust and gas that are formed into intricate structures.

The image of Cas A was taken using Webb's MIRI instrument, which looks in the mid-infrared range. Located 11,000 light-years away, Cassiopeia A is one of the brightest objects in the sky in the radio wavelength, and is also visible in the optical, infrared, and X-ray wavelengths. To see the different features picked up in different wavelengths, you can look at the slider comparison of the Webb infrared image alongside a Hubble visible light image of the same object.

Read more