Skip to main content

Planet Nine could be a miniature black hole hiding in our solar system

An artist’s impression of a black hole. ANDRZEJ WOJCICKI/SCIENCE PHOTO LIBRARY

The concept of a ninth planet in our solar system which orbits far beyond Neptune captured the public’s imagination in 2016, and earlier this year the idea gained steam again when astronomers found more evidence in support of “Planet Nine’s” existence. Now, a different team of astronomers has suggested an even more intriguing idea: That the strange body we’re seeing evidence of is not a planet but a miniature black hole.

The researchers consider what they describe as an “exciting possibility,” that the strange movements of the objects which orbit the sun beyond Neptune could be explained by the presence of a primordial black hole. Despite how unlikely that sounds, the authors believe that “this scenario is not unreasonable” and they suggest a way to test it by looking for evidence of a dark matter microhalo around the mini black hole.

Primordial black holes are a theoretical type of black hole that formed in the earliest universe, soon after the Big Bang. As the early universe was very dense, it may have been possible for black holes to form not from the collapse of stars but on a much smaller scale. These tiny speculative objects could weigh as little as one times the mass of the Earth, and a black hole five times the mass of the Earth could fit in the palm of your hand, while one 10 times the mass of the Earth would be about the size of a bowling ball.

That means these black holes would be far smaller than the ones we are used to studying, so it would be possible for one to be located within our solar system and us to have not noticed it yet.

To search for the potential mini black hole in our cosmic backyard, we’ll have to be creative in the tools we use. Black holes absorb any light which passes beyond their event horizon, so they’re hard to spot. But the researchers suggest that a planet-mass black hole would have a halo of dark matter around it, which could stretch up to 1 billion kilometers from its center. Although we can’t detect dark matter directly, we can look for dark matter particles interacting and creating bursts of gamma rays which would give a clue to the presence of a black hole.

To test their theories, the researchers’ next step is to search through data from the Fermi Gamma-Ray Space Telescope, looking for telltale gamma-ray bursts that could help them identify our solar system’s potentially most elusive body.

The paper is available to view online on the pre-publication archive arXiv.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Supermassive black hole spews out jet of matter in first-of-its-kind image
Scientists observing the compact radio core of M87 have discovered new details about the galaxy’s supermassive black hole. In this artist’s conception, the black hole’s massive jet is seen rising up from the centre of the black hole. The observations on which this illustration is based represent the first time that the jet and the black hole shadow have been imaged together, giving scientists new insights into how black holes can launch these powerful jets.

As well as pulling in anything which comes to close to them, black holes can occasionally expel matter at very high speeds. When clouds of dust and gas approach the event horizon of a black hole, some of it will fall inward, but some can be redirected outward in highly energetic bursts, resulting in dramatic jets of matter that shoot out at speeds approaching the speed of light. The jets can spread for thousands of light-years, with one jet emerging from each of the black hole's poles in a phenomenon thought to be related to the black hole's spin.

Scientists observing the compact radio core of M87 have discovered new details about the galaxy’s supermassive black hole. In this artist’s conception, the black hole’s massive jet of matter is seen rising up from the center of the black hole. The observations on which this illustration is based represent the first time that the jet and the black hole shadow have been imaged together, giving scientists new insights into how black holes can launch these powerful jets. S. Dagnello (NRAO/AUI/NSF)

Read more
Machine learning used to sharpen the first image of a black hole
A team of researchers, including an astronomer with NSF’s NOIRLab, has developed a new machine-learning technique to enhance the fidelity and sharpness of radio interferometry images. To demonstrate the power of their new approach, which is called PRIMO, the team created a new, high-fidelity version of the iconic Event Horizon Telescope's image of the supermassive black hole at the center of Messier 87, a giant elliptical galaxy located 55 million light-years from Earth. The image of the M87 supermassive black hole originally published by the EHT collaboration in 2019 (left); and a new image generated by the PRIMO algorithm using the same data set (right).

The world watched in delight when scientists revealed the first-ever image of a black hole in 2019, showing the huge black hole at the center of galaxy Messier 87. Now, that image has been refined and sharpened using machine learning techniques. The approach, called PRIMO or principal-component interferometric modeling, was developed by some of the same researchers that worked on the original Event Horizon Telescope project that took the photo of the black hole.

That image combined data from seven radio telescopes around the globe which worked together to form a virtual Earth-sized array. While that approach was amazingly effective at seeing such a distant object located 55 million light-years away, it did mean that there were some gaps in the original data. The new machine learning approach has been used to fill in those gaps, which allows for a more sharp and more precise final image.

Read more
Unique black hole is trailed by 200,000 light-year-long tail of stars
This is an artist's impression of a runaway supermassive black hole that was ejected from its host galaxy as a result of a tussle between it and two other black holes. As the black hole plows through intergalactic space it compresses tenuous gas in front to it. This precipitates the birth of hot blue stars. This illustration is based on Hubble Space Telescope observations of a 200,000-light-year-long contrail of stars behind an escaping black hole.

Black holes might have a reputation as terrifying monsters, devouring all they come into contact with -- but they can be a force of creation too, feeding the formation of new stars. Researchers using data from the Hubble Space Telescope recently spotted an unexpectedly huge trail of stars forming in the wake of a rogue black hole.

While most very large black holes, called supermassive black holes, sit at the center of galaxies, occasionally these enormous beasts can be found wandering alone in the depths of space. That's the case with the recently discovered black hole with the mass of 20 million suns, which is streaking through the sky at tremendous speed. This likely began with two galaxies merging, each with its own supermassive black hole, which formed a binary system. Then a third galaxy got too close, and in the chaos of a three-way merger one of the black holes was kicked out and sent zipping off into space -- so fast that if it were in our solar system, it would travel from the Earth to the moon in 14 minutes.

Read more