Skip to main content

Scientists say ‘mini-nukes’ could explain why some satellites mysteriously fail

penny machine learning income predictor 30619164  space satellite orbiting the earth
Andrey Armyagov/123RF
Experts met at a conference in Germany last month to discuss the pressing issue of space debris orbiting our planet, warning of an exponentially worsening threat. Dangerous pieces have more than doubled over the past 25 years, according to the experts, who estimated some 150 million pieces larger than 0.04 inches currently orbit Earth.

This week, a team of researchers from Stanford, Massachusetts Institute of Technology, and the University of Boston have raised another concern about smaller particles that could also threaten orbiting spacecraft. These dust-sized micrometeorites might not fracture spacecraft like some space debris but simulations showed that, upon impact, they produce a pulse of radiation strong enough to disable a satellite.

The hypothesis was hatched by senior author of the study, Stanford’s Sigrid Close, who looked into the idea that hypervelocity impacts could be to blame for some satellite failures, roughly half of which remain unexplained. Close and her colleagues used computer simulations to model plasma and electromagnetic fields at the same time, calculating the amount of radiation generated by the plasma during impact.

“For the last few decades researchers have studied these hypervelocity impacts and we’ve noticed that there’s radiation from the impacts when the particles are going sufficiently fast,” Alex Fletcher, lead author and  postdoctoral researcher at Boston University, said in a press release. “No one has really been able to explain why it’s there, where it comes from or the physical mechanism behind it.”

Put briefly, the radio-frequency radiation occurs when a projectile hits an object and converts into a plasma. As the plasma expands, its electrons move exponentially faster than the positive ions creating a current. The more the plasma cloud expands, the more the electrons and ions pulls against each other, oscillating that current. This interplay creates the pulse of radiation, which Close told IEEE Spectrum is like a “mini-nuke.”

According to the researchers calculations, a dangerous pulse could from a femtogram-scale (that’s smaller than nano-scale) particle traveling at just under 11.2 miles per second. Keep in mind that many micrometeorites are many magnitudes larger and travel much faster. The good news is, for one of these “mini-nukes” to really deal some damage, it has to hit in precisely the right (or wrong) spot.

“It sounds scary, but the plasmas are tiny and disappear in microseconds,” Close said. “So you have to be unlucky. You have to have sensitive components close to the impact.”

Nonetheless, for a “failure is not an option” agency like NASA, the study is one which they’ll want to consider.

A paper detailing the study was published this week in the journal Physics of Plasmas.

Editors' Recommendations

Dyllan Furness
Dyllan Furness is a freelance writer from Florida. He covers strange science and emerging tech for Digital Trends, focusing…
Hubble spots a bright galaxy peering out from behind a dark nebula
The subject of this image taken with the NASA/ESA Hubble Space Telescope is the spiral galaxy IC 4633, located 100 million light-years away from us in the constellation Apus. IC 4633 is a galaxy rich in star-forming activity and also hosts an active galactic nucleus at its core. From our point of view, the galaxy is tilted mostly towards us, giving astronomers a fairly good view of its billions of stars.

A new image from the Hubble Space Telescope shows a galaxy partly hidden by a huge cloud of dust known as a dark nebula. The galaxy IC 4633 still shines brightly and beautifully in the main part of the image, but to the bottom right, you can see dark smudges of dust that are blocking the light from this part of the galaxy.

Taken using Hubble's Advanced Camera for Surveys (ACS) instrument, the image also incorporates data from the DECam instrument on the Víctor M. Blanco 4-meter Telescope, which is located in Chile. By bringing together data from the space-based Hubble and the ground-based DECam, astronomers can get a better look at this galaxy, located 100 million light-years away, and the dark dust partially obscuring it.

Read more
Watch NASA begin testing its Orion capsule for lunar flyby
NASA starts testing the Orion capsule for the Artemis II mission.

NASA has started testing the Orion spacecraft that will take four astronauts on a voyage around the moon as part of the Artemis II mission currently scheduled for 2025.

The space agency shared a video (below) showing the Orion capsule being transported to an upgraded vacuum chamber inside the Operations and Checkout Building at NASA’s Kennedy Space Center in Florida. There, it will undergo electromagnetic compatibility and interference testing.

Read more
Junk from the ISS fell on a house in the U.S., NASA confirms
The International Space Station.

A regular stanchion (left) and the one recovered from the NASA flight support equipment used to mount International Space Station batteries on a cargo pallet. The recovered stanchion survived reentry through Earth’s atmosphere on March 8, 2024, and impacted a home in Florida. NASA

When Alejandro Otero’s son called him on March 8 to say that something had crashed through the roof of their home, he initially thought it might have been a meteorite.

Read more