Skip to main content

Wandering planets could outnumber the stars in our galaxy

Rogue Planet (Animation)

In the depths of space, in the vast expanses between stellar systems, there float lonely planets which have no star to orbit around. These isolated travelers are called rogue planets, but we really don’t know how many of them are out there. Now, a new study suggests that NASA’s upcoming Nancy Grace Roman Space Telescope could be able to identify hundreds of these rogue planets, which could even outnumber the stars in our galaxy.

Recommended Videos

“The universe could be teeming with rogue planets and we wouldn’t even know it,” co-author of the study Scott Gaudi, professor of astronomy at Ohio State University, said in a statement. “We would never find out without undertaking a thorough, space-based microlensing survey like Roman is going to do.” Roman will search for rogue planets in particular regions of space and, from this data, scientists can ascertain how many rogue planets might exist.

High-resolution illustration of the Roman spacecraft against a starry background.
High-resolution illustration of the Roman spacecraft against a starry background. NASA's Goddard Space Flight Center

Microlensing is a technique in which astronomers use telescopes like Roman to see distant objects, by looking at the way light is bent when another object passes between us and the target. This allows them to see far-off stars by using these intermediate objects like a magnifying glass.

Rogue planets are typically hard to spot because they are not near to a source of light like a star. But Roman will be able to detect them using microlensing. “This gives us a window into these worlds that we would otherwise not have,” lead author Samson Johnson, a graduate student at Ohio State University said in another statement. “Imagine our little rocky planet just floating freely in space — that’s what this mission will help us find.”

One debate around rogue planets is how they came to be alone — and whether they once did orbit a star. So studying them can help researchers to learn about how planets and stellar systems form.

“As our view of the universe has expanded, we’ve realized that our solar system may be unusual,” Johnson said in the statement. “Roman will help us learn more about how we fit in the cosmic scheme of things by studying rogue planets.”

The findings are published in The Astronomical Journal.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
How James Webb is peering into galaxies to see stars being born
Researchers are getting their first glimpses inside distant spiral galaxies to see how stars formed and how they change over time, thanks to the James Webb Space Telescope’s ability to pierce the veil of dust and gas clouds.

Recently astronomers used the James Webb Space Telescope to look at the structures of dust and gas which create stars in nearby galaxies. Now, some of the researchers have shared more about the findings and what they mean for our understanding of how galaxies form and evolve.

The project, called Physics at High Angular resolution in Nearby Galaxies, or PHANGS, used James Webb to observe several galaxies which are similar to our own Milky Way to see how stars are forming within them.

Read more
Roman Space Telescope will survey the sky 1,000 times faster than Hubble
NASA’s Nancy Grace Roman Space Telescope

Since its launch in 2021, the James Webb Space Telescope has been delighting space fans with its stunning views of space objects near and far. But NASA has another space telescope in the works that will be able to help answer even more of the big questions in astronomy. The Nancy Grace Roman Space Telescope, set to launch in 2027 and colloquially known as Roman, will look at vast areas of space to help cosmologists understand the universe on a large scale.

In astronomy research, it's important to be able to look both in very great detail and on a very wide scale. Telescopes like Hubble and James Webb have exceptional sensitivity, so they can look at extremely distant objects. Roman will be different, aiming to get a broad view of the sky. The image below illustrates the differences between the telescopes, showing what Roman and Hubble can capture in one go and comparing Hubble's detailed, but narrow view to Roman's much wider view.

Read more
James Webb captures stunning image of star formation in nearby galaxy
NGC 346, shown here in this image from NASA’s James Webb Space Telescope Near-Infrared Camera (NIRCam), is a dynamic star cluster that lies within a nebula 200,000 light years away. Webb reveals the presence of many more building blocks than previously expected, not only for stars, but also planets, in the form of clouds packed with dust and hydrogen. 

A stunning new image from the James Webb Space Telescope shows a stellar nursery called NGC 346, which is not only beautiful but is also leading astronomers to rethink their theories about how stars and planets could have formed in the early universe.

The star cluster NGC 346 is a busy region full of star formation and is located in the nearby Small Magellanic Cloud, a satellite galaxy of the Milky Way. The composition of the Small Magellanic Cloud is rather different from that of the Milky Way, as it has fewer heavier elements. As dust is typically composed of these heavier elements, astronomers thought that there would be less dust in the Small Magellanic Cloud -- but that's not what Webb found.

Read more