Skip to main content

The key to smaller cameras that don’t suck could lie in this incredible material

graphene cmos sensor 21231071  application
Graphene is incredibly thin, transparent and also conducts electricity. Eduard Bonnin Turina / 123RF
Supermaterial graphene may have just found its way into imaging tech. A recent study published at the Cornell University Library shows that integrating graphene into a CMOS sensor could allow for higher resolution and lower noise — all within a camera small enough to fit inside a smartphone or even a smartwatch.

Graphene is a layer of graphite that, despite being as thin as a single atom, is one of the strongest known materials. While that allows the supermaterial (yes, like a superfood but for tech) to create sturdy, small objects, it exhibits a few other qualities that are essential to its integration into digital photo sensors. The material is transparent and also highly conductive.

As part of the newly developed digital image sensor, the graphene serves as a phototransistor — which is just a fancy way of saying it turns light into electrical current. The graphene is just one layer of the sensor, but its job of turning light into electricity could allow small sensors to achieve big resolution.

Each pixel on the sensor is covered with graphene. That layer is covered with a layer of quantum dots. Essentially, the top dot layer absorbs the light and transfers it as electrons into the graphene. The sensor’s circuit detects the change in the graphene and that light turns into electricity — or a digital photograph.

The researchers said that with the graphene-based sensor, they didn’t encounter the usual struggles with shrinking the size of each pixel in order to fit more on the sensor. Typically, the more megapixels that are squished onto a sensor, the more noise (or tiny dots) you see in the image, particularly in low light. (That’s why sensor size, not megapixels, is often a better indicator of quality). With the graphene-based sensor, the researchers said that increased noise wasn’t as much of an issue as with typical CMOS designs.

The researchers also managed to use the sensor to create an experimental camera that was sensitive to visible and UV light as well as infrared.

Essentially, graphene’s incredibly small nature and transparent quality allows developers to create smaller sensors — but unlike other attempts at small sensors, these little cameras have a higher resolution and also handle low light better.

Whether — or when — the new sensor design winds up in smartphones and other tiny imaging tech, the possibilities of graphene continue to impress.

Editors' Recommendations

Hillary K. Grigonis
Hillary never planned on becoming a photographer—and then she was handed a camera at her first writing job and she's been…
Fujifilm’s most-hyped camera has just started shipping
Fujifilm's X100VI camera, released in 2024.

The latest iteration of Fujifilm’s X100 camera started shipping on Wednesday.

The X100VI is -- as the name cleverly suggests -- the sixth in the series. Early reviews have been mostly positive as the camera builds on the successes of the already impressive earlier models going all the way back to the original X100, which launched in 2011.

Read more
How to resize an image on Mac, Windows, and a Chromebook
Windows 11 set up on a computer.

Resizing an image is something we’re all going to have to do at some point in our digital lives. And whether you’re using Windows, macOS, or you’re rocking a Chromebook, there are ways to scale images up and down on each PC. Fortunately, these are all relatively simple methods too.

Read more
Watch an acclaimed director use the iPhone 15 Pro to shoot a movie
acclaimed director uses iphone 15 to shoot movie shot on pro midnight

Shot on iPhone 15 Pro | Midnight | Apple

As part of its long-running Shot on iPhone series, Apple recently handed acclaimed Japanese director Takashi Miike (Audition, 13 Assassins, The Happiness of the Katakuris) an iPhone 15 Pro to shoot a short film.

Read more