Skip to main content

Crawling robot is helping reveal locomotion secrets from 360 million years ago

A team of physicists, biologists, and roboticists from the Georgia Institute of Technology, Clemson University, and Carnegie Mellon University are using robots to explore how the first animals crawled on land 360 million years ago — by creating a robot modeled on the African mudskipper fish, which is able to propel itself in both water and land.

The work is not only helping us understand more about the way that the first creatures to crawl out of the water moved, but also to learn valuable lessons that could make future robots more efficient at moving on surfaces such as sand and mud, which are typically tough to negotiate.

“I call the work that I do robo-physics,” Professor Dan Goldman, who worked on the project, told Digital Trends. “This isn’t a robot that’s designed to go out into natural complicated environments. It’s designed as a model of a biological life form we’re trying to understand — in this case an extinct organism. Using it we can discover incredible things we never knew about the movement of animals millions of years ago.”

So far the robot has helped researchers formulate theories, including the idea that early land-crawlers may have used their powerful tails more than previously thought — mainly as a means to propel themselves forward up steep slopes.

The so-called “MuddyBot” robot combined information from fossil records with 3D-printed elements and a mathematical physics-based model to help recreate the movement of prehistoric creatures.

“Building a robot is a great way of understanding the animal we’re studying,” Goldman continues. “You’re talking about an extinct creature interacting with environments like mud and sand banks, which present a challenge from a physics perspective. Mathematical modelling, along with building a physical robot, lets us isolate particular elements we think are important in the mechanical intelligence of the locomotor — and then figure out what it is about those elements that are important or unimportant for tasks.”

While MuddyBot remains a research project right now, the fact that the work is sponsored by the National Science Foundation, the Army Research Office, and the Army Research Laboratory suggests that the findings could one day be applied to real-world scenarios.

Doing so will help robots become even more versatile than they already are.

Editors' Recommendations

Luke Dormehl
I'm a UK-based tech writer covering Cool Tech at Digital Trends. I've also written for Fast Company, Wired, the Guardian…
How robotic exoskeletons can help paraplegic patients heal from injuries
Gordon Cheng, Professor for Cognitive Systems, wants to dig deeper in understanding how the brain works.

Gordon Cheng, Professor for Cognitive Systems, wants to dig deeper in understanding how the brain works. Astrid Eckert / TUM

When a team of neuroscientists fitted paraplegic patients with exoskeletons, they hoped the patients could use the robotic assistance to walk. They found something even more remarkable: Using the exoskeleton helped their healing, with patients regaining some control over their legs.

Read more
Giving robots a layer of fat could help supercharge their battery life
BYU's Robot King Louie being built by NASA

Structural, rechargeable zinc battery

Robots could be on course to get fatter -- and it’s for their own good. In an effort to solve one of the biggest problems in current robotics, a lack of battery life, researchers at the University of Michigan have developed a new rechargeable zinc battery that could be worn around robots like a layer of fat. This could provide them with up to 72 times more power capacity than they get from today’s commonly used lithium-ion batteries.

Read more
This tiny robot could help surgeons perform ultra-delicate procedures
Origami surgical robot

Origami Miniature Surgical Manipulator

It goes without saying that surgeons need steady hands. But how steady those hands need to be depends a lot on the kind of procedure the surgeons are carrying out at the time. An amputation might require less fine-grain, subtle precision than, say, a mastectomy. And a mastectomy might require less agonizing defusing-a-nuclear-bomb dexterity than minimally invasive laparoscopic surgery, in which tiny tools and an impossibly minuscule camera are inserted into a small incision to carry out an operation.

Read more