Skip to main content

Engineered sand could remove nasty toxins to produce drinkable water

Water is one of our most underappreciated resources. For people with steady access to this life-giving liquid, it’s absence can seem like a distant dystopian nightmare. But some 783 million people lack clean water worldwide, according to the World Health Organization, and even in the United States, parched communities suffer from prolonged droughts.

Researchers at the University of California, Berkeley are working on a low-cost solution to make better use of the water at hand. They’ve engineered sand, coating the grains in compounds that react with and help destroy organic pollutants found in stormwater. The solution could be used to help support local sources of potable water for water-stressed communities.

Recommended Videos

“In all but the most arid places, enough rain falls within the city limits to provide the water we drink and use in our homes,” David Sedlak, a civil and environmental engineering at UC Berkeley who advised on the project, told Digital Trends. “Unfortunately, we cannot build reservoirs in a crowded city and rain barrels are too small to hold all of the water that we need. To capture the rainwater that falls in our cities, engineers have developed new approaches for infiltrating rainwater into the ground, where it can be stored in groundwater aquifers.”

Please enable Javascript to view this content

The problem is that a lot of rainwater drains off rooftops, sidewalks, and parking lots, which pollute it with organic gunk and chemicals, and make it utterly unusable.

Sedlak and graduate student Joseph Charbonnet developed what they hope may provide a low-cost solution for decontaminating stormwater for drinking and household use. Coating sand in two kinds of manganese that react to form manganese oxide produces engineered sand thatbinds to chemicals like herbicides and pesticides and pulls them out of the water.

“If we are going to treat [water] as it infiltrates into the ground, we need to apply technologies that are simple, inexpensive, and do not require a lot of oversight,” Sedlak said. “Rainwater is typically introduced to aquifers by allowing it to percolate through sand. We have invented a new way of coating the surface of sand grains with a thin layer of manganese oxide.”

The research team’s idea is to add an engineered sand to current water reclamation basins, where standard sand is currently used. The stormwater would then be partially decontaminated as it percolates through the sand and into an aquifer. During rainy months, the aquifer would replenish, providing a source of water through the dry season.

The Berkeley team’s engineered sand doesn’t remove all contaminants, meaning it would need to be used in conjunction with other types of purification systems to make it potable. Sedlak pointed to the complementary work at the National Science Foundation’s Engineering Research Center for Reinventing the Nation’s Urban Water Infrastructure, where they create materials to remove toxic metals and pathogenic microbes.

A paper detailing the research was published last month in the journal Environmental Science & Technology,

Dyllan Furness
Former Digital Trends Contributor
Dyllan Furness is a freelance writer from Florida. He covers strange science and emerging tech for Digital Trends, focusing…
Hyundai Ioniq 5 sets world record for greatest altitude change
hyundai ioniq 5 world record altitude change mk02 detail kv

When the Guinness World Records (GWR) book was launched in 1955, the idea was to compile facts and figures that could finally settle often endless arguments in the U.K.’s many pubs.

It quickly evolved into a yearly compilation of world records, big and small, including last year's largest grilled cheese sandwich in the world.

Read more
Global EV sales expected to rise 30% in 2025, S&P Global says
ev sales up 30 percent 2025 byd sealion 7 1stbanner l

While trade wars, tariffs, and wavering subsidies are very much in the cards for the auto industry in 2025, global sales of electric vehicles (EVs) are still expected to rise substantially next year, according to S&P Global Mobility.

"2025 is shaping up to be ultra-challenging for the auto industry, as key regional demand factors limit demand potential and the new U.S. administration adds fresh uncertainty from day one," says Colin Couchman, executive director of global light vehicle forecasting for S&P Global Mobility.

Read more
Faraday Future could unveil lowest-priced EV yet at CES 2025
Faraday Future FF 91

Given existing tariffs and what’s in store from the Trump administration, you’d be forgiven for thinking the global race toward lower electric vehicle (EV) prices will not reach U.S. shores in 2025.

After all, Chinese manufacturers, who sell the least expensive EVs globally, have shelved plans to enter the U.S. market after 100% tariffs were imposed on China-made EVs in September.

Read more