Skip to main content

Shrimp from the Sahara sounds crazy, but it may be the future of aquaculture

Agriculture has come a long way in the past century. We produce more food than ever before — but our current model is unsustainable, and as the world’s population rapidly approaches the 8 billion mark, modern food production methods will need a radical transformation if they’re going to keep up. But luckily, there’s a range of new technologies that might make it possible. In this series, we’ll explore some of the innovative new solutions that farmers, scientists, and entrepreneurs are working on to make sure that nobody goes hungry in our increasingly crowded world.

Seafood is a big part of humanity’s diet, and it’s been that way for a very long time. According to archaeological evidence, Homo sapiens mastered the art of fishing somewhere around 40,000 years ago — and we’ve been eating seafood ever since.

The only problem, of course, is that nowadays there are significantly more people eating seafood than there were 40,000 years ago. There are so many seafood eaters on the planet now that we’ve passed the point where naturally bred fish can sustain us. So now, we farm our seafood — just like we farm wheat, corn, and potatoes.

We don’t just do it a little bit, either. Globally, aquaculture — the practice of breeding fish, crustaceans, mollusks, and aquatic plants — supplies more that 50 percent of all seafood produced for human consumption.

That number is expected to increase. According to the Food and Agriculture Organization of the United Nations, approximately 75 percent of the world’s fisheries are either exploited or depleted due to fishing, which will likely lead to the complete depletion of currently fished stocks by 2048. That means that over the next 15 years, we’ll need to produce an additional 40 million metric tons of farmed seafood in order to meet demand.

One-fifth of the world’s mangrove forests have been destroyed due to the expansion of shrimp and fish farming.

That’s a huge challenge given our current aquaculture practices, which are often inefficient, volatile (susceptible to disease), and damaging to the environment. So how do we scale production and avoid amplifying our existing problems?

The answer, of course, lies in science and technology. Right now, researchers and environmentalists all over the globe are working on a host of potential solutions that might provide a sustainable stock of farmed seafood that tastes great and won’t harm the environment.

In this article, we’ll explore one of the most promising ideas to come out of this effort: a revolutionary closed-loop shrimp farming technique that ditches the open ocean in favor of man-made inland pools where farmers can better control environmental conditions.

Shrimp Farming: A Brief History

The shrimp industry is a textbook example of the struggles our aquaculture system currently faces.

When commercial shrimp farming exploded in the 1970s, small-scale inland farms were launched to meet this demand and supplement the harvesting of the wild shrimp stock. These farms now supply more than 55 percent of the world’s shrimp, with a collective market value of more than $10 billion. Shrimp farming shows no signs of decline and has the highest growth rate in the aquaculture industry, expanding by 10 percent each year.

This steady increase in production is not without controversy. Farming is mostly concentrated in tropical areas where it takes between three and six months to raise market-sized shrimp. But land in tropical zones is limited, so farmers often clear-cut valuable, ecologically sensitive coastal habitats to create man-made pools for their shrimp.

mangrove forest
Image used with permission by copyright holder

That’s not good. According to a study by the U.N. University Institute for Water, Environment, and Health, approximately one-fifth of the world’s mangrove forests have been destroyed due to the expansion of shrimp and fish farming. These mangroves grow in salt marsh areas and provide valuable habitats for the spawning of wild fish species and other aquatic animals. They also absorb the greenhouse gas carbon dioxide and serve as a protective buffer from coastal storms.

But it’s not just mangrove depletion that’s causing concern. Commercial shrimp farms also face a number of health issues. Farm shrimp are typically one of two different species: Penaeus vannamei (Pacific white shrimp) and Penaeus monodon (giant tiger prawn). These two species are highly susceptible to disease, and infections can often wipe out entire harvests in one fell swoop.

To combat these crop-destroying infections, Asian farmers often use antibiotics and other chemical treatments designed to prevent the spread of disease. The only problem is that, due to the overuse of these antibiotics, farms now face a growing threat from antibiotic-resistant bacteria.

A Healthier and More Eco-Friendly Alternative

Luckily, there’s a small group of entrepreneurs who are risking it all to show the world there is a better way to farm shrimp. This revolution is taking hold in the United States, where several small-scale shrimp farms are now using a sustainable, zero-waste method to produce healthy, eco-friendly shrimp for local markets.

This zero-waste farming revolution is fueled by an innovative aquaculture technique called “Biofloc technology,” which allows nutrients to be recycled and reused in a closed-loop system.

New-age aquaculture farms can be located anywhere there’s sufficient indoor space.

In this system, shrimp are grown in climate-controlled indoor tanks that provide highly favorable conditions for them. As the shrimp grow and produce waste, microorganisms are introduced to detoxify the water and remove shrimp poop from the system. These microorganisms are then kept in check by zooplankton, which consume these detoxifying bacteria. The zooplankton, in turn, become food for the shrimp, allowing farmers to provide a portion of the shrimp’s nutritional needs free of charge.

Because the shrimp are grown in enclosed tanks, these new-age aquaculture farms can be located anywhere there’s sufficient indoor space. It doesn’t matter where you set up shop — Biofloc tech can be used practically anywhere — from a small farming community in Maryland to the middle of the Sahara Desert.

These indoors farms also use their space efficiently. According to Marvesta Shrimp Farms founder Scott Fritze, the company can produce shrimp in a 5-acre facility that would occupy two to three hundred acres of an outdoor farm. Because of this small footprint and zero-waste design, the Biofloc system eliminates the habitat destruction, the damaging eutrophication from wastewater release, and other harmful effects of traditional outdoor shrimp farming. Indoor farming is so eco-friendly that the practice has earned a “Best Choice” award from Seafood Watch, a watchdog agency that evaluates the ecological impact of wild-caught and farmed seafood in North America.

Indoor shrimp stocks are also healthier than their outdoor counterparts. The self-purifying, closed-loop system makes it easy to regulate nutrient levels and control disease. As a result, indoor shrimp can be raised without the use antibiotics or fertilizers, producing an end product that is both healthier and safer for consumers.

(Video: KSU Aquaculture Research Center)

There’s even a geographical benefit. The Biofloc method allows farmers to harvest shrimp quickly, and transport them from tank to market in just a few hours. In the future, this could allow fresh seafood deliveries to areas that are currently sustained by imports from coastal regions and other countries.

The Future of Seafood?

Inland shrimp farming may sound like a panacea for the shrimp farming industry, but the method does come with its own unique set of challenges.

The first is a high startup cost. Not only does a prospective Biofloc shrimp farmer need an indoor facility, he also needs to provide adequate heating, large-enough tanks to support a shrimp population, and a circulation system that’s disease- and contamination-free.

On top of that, investors are often hesitant to pour money into these ventures — and for good reason. Even if a farmer does have the resources to start up a shrimp farm, the venture is risky. Despite being less-prone to disease than traditional farms, Biofloc operations still aren’t immune to infection. One disease outbreak can wipe out an entire harvest, putting the company’s financial stability at risk.

Slowly but surely, aquaculture is moving inland.

Despite these hardships, there are several companies making a go of it in the indoor shrimp farming industry.

One of the pioneers in the U.S. indoor shrimp market is Maryland-based Marvesta. Founded in 2003, the company rode a wave of success until an illness outbreak in 2013 nearly shut down operations permanently. The company rebounded, however, and recently partnered with RDM Aquaculture to expand its operation to commercial farmers who want to harvest shrimp.

Another startup, Sky8 shrimp farm in Massachusets, is leveraging its proximity to the ocean by using filtered seawater from the Gulf of Maine to give the shrimp a distinctive flavor and texture that can’t be matched by frozen shrimp.

And it’s not just big companies like Sky8 and Marvesta that are flourishing. There are dozens of smaller operations out there, including ECO Shrimp Garden in New York and Sherlock Shrimp in Iowa, who are finding niches for shrimp in their local communities.

Slowly but surely, aquaculture is moving inland.

Kelly Hodgkins
Kelly's been writing online for ten years, working at Gizmodo, TUAW, and BGR among others. Living near the White Mountains of…
The 11 best Father’s Day deals that you can get for Sunday
Data from a workout showing on the screen of the Apple Watch Series 8.

Father's Day is fast approaching and there's still time to buy your beloved Dad a sweet new device to show him how much you love him. That's why we've rounded up the ten best Father's Day tech deals going on right now. There's something for most budgets here, including if you're able to spend a lot on your loved one. Read on while we take you through the highlights and remember to order fast so you don't miss out on the big day.
Samsung Galaxy Tab A8 -- $200, was $230

While it's the Plus version of the Samsung Galaxy Tab A8 that features in our look at the best tablets, the standard variety is still worth checking out. Saving your Dad the need to dig out their laptop or squint at a small phone screen, the Samsung Galaxy Tab A8 offers a large 10.5-inch LCD display and all the useful features you would expect. 128GB of storage means plenty of room for all your Dad's favorite apps as well as games too. A long-lasting battery and fast charging save him the need for a power source too often too.

Read more
The Apollo wearable is proven to help you sleep better (and it’s on sale)
Apollo wearable worn during sleep in bed.

This content was produced in partnership with Apollo Neuro.
Stress, anxiety, and insomnia are all concerning things that just about everyone struggles with at one time or another. Maybe you can sleep, fending off insomnia, but you lack quality sleep and don’t feel rested in the morning. Or, maybe when it’s time to kick back and relax, you just can’t find a way to do so. There are many solutions for these issues, some work, and others don’t, but one unlikely area of support can be found in a modern, smart wearable.

Medicine is the obvious choice, but not everyone prefers to go that route. There is an answer in modern technology or rather a modern wearable device. One such device is the Apollo wearable, which improves sleep and stress relief via touch therapy. According to Apollo Neuro, the company behind the device, which is worn on your ankle, wrist or clipped to your clothing, it sends out waves of vibrations to help your body relax and reduce feelings of stress. It's an interesting new approach to a common problem that has typically been resolved via medicine, therapy, or other more invasive and time-consuming techniques. The way it utilizes those vibrations, uniquely placed and administered, to create a sense of peace, makes us ask, can it really cure what ails us? We’ll dig a little deeper into how it achieves what it does and what methods it’s using to make you feel better.

Read more
What comes after Webb? NASA’s next-generation planet-hunting telescope
An illustration shows how NASA's Habitable Worlds Observatory would measure the atmosphere of distant planets.

When it comes to building enormous, complex space telescopes, agencies like NASA have to plan far in advance. Even though the James Webb Space Telescope only launched recently, astronomers are already busy thinking about what will come after Webb — and they've got ambitious plans.

The big plan for the next decades of astronomy research is to find habitable planets, and maybe even to search for signs of life beyond Earth. That's the lofty goal of the Habitable Worlds Observatory, a space telescope currently in the planning phase that is aimed at discovering 25 Earth-like planets around sun-like stars.

Read more