Skip to main content

Scientists unveil new ‘4D-printing’ technique that produces shape-shifting objects

Though the practice of 3D printing is still firmly entrenched in its journey from fledgling idea to emerging technology, news out of Harvard’s Wyss Institute this week proves innovation waits for no one. According to a published press release, a team of researchers at the esteemed Ivy League school have taken the concept of 3D printing and upped the ante by adding a fourth dimension: time. Taking on the obvious label of 4D printing, the group’s inventive take on additive manufacturing uses a gel-like composite to print flat objects which then have the ability to dramatically alter their shape when submerged in water.

Developed under the management of the study’s senior author Jennifer Lewis, the gel-like composite ink used for the prints contains miniature fibers of cellulose, an organic compound found in plants. Moreover, a plant’s ability to alter their shape and formation based on environmental stimuli was one of the biggest influences when Lewis’ team created 4D printing. Specifically, the group intended to develop a printable substance capable of mimicking the way plants respond and react to precipitation or sunlight. The resulting cellulose-heavy composite allowed them to accomplish this very goal.

Recommended Videos

“Using one composite ink printed in a single step, we can achieve shape-changing hydrogel geometries containing more complexity than any other technique, and we do so simply by modifying the print path,” says co-lead author and graduate research assistant A. Sydney Gladman. “What’s more, we can interchange different materials to tune for properties such as conductivity or biocompatibility.”

Please enable Javascript to view this content

Before printing, Lewis and her team have the ability to adjust the extent to which each object will swell when immersed in water by choosing how to align the fibers of cellulose. While aligning the cells, the printer then encodes the hydrogel ink for specific anistropic stiffness and swelling. It’s the cellulose’s anistropic quality that allows the team to accurately predict how the object may shift its shape when exposed to water. Because of this, the team developed a precise mathematical model which allows them to program and tune the prints to whatever they desire.

“What’s remarkable about this 4D printing advance made by Jennifer and her team is that it enables the design of almost any arbitrary, transformable shape from a wide range of available materials with different properties and potential applications, truly establishing a new platform for printing self-assembling, dynamic microscale structures that could be applied to a broad range of industrial and medical applications,” says Wyss Institute director Donald Ingber.

Moving forward, the team intends to see how well its 4D printing model does printing live, active tissue. Whereas a 3D-printed organ may allow for the production of a working replacement organ, advancements in 4D printing could allow for the creation of actively adaptive cells — i.e. as the body changes, so too would the implanted 4D-printed tissue. These are obviously incredibly lofty goals for a tech in its infancy, but if anyone’s going to do it, why not a team of scientists from Harvard University?

Rick Stella
Former Digital Trends Contributor
Rick became enamored with technology the moment his parents got him an original NES for Christmas in 1991. And as they say…
Printable wood biopaste could be the sustainable future of 3D printing
Biopaste 3D printing

Researchers at Germany’s University of Freiburg may have found a way to make 3D printing a bit more environmentally friendly -- by printing with a new material best described as a wood-based biopaste. After all, who needs boring, unsustainable plastics when you’ve got an alternative that works impressively well, made out of wood biopolymers cellulose and lignin?

Marie-Pierre Laborie, the lead researcher on the project, told Digital Trends that creating the printable material is straightforward. “We put each component, a cellulose-based derivative and lignin, into [a] solution and blend the two … to form a sort of paste of high-solid content,” Laborie said. “At [a] particular solid content and composition, we retain the lyotropic liquid crystalline behavior of the cellulose derivative. This facilitates the processing of the paste. The paste then solidifies thanks to the stabilizing effect of the lignin upon 3D printing.”

Read more
This startup says it will be 3D-printing entire houses within a year
mighty buildings 3d print house 5

Is 3D printing the future of housebuilding? It certainly will be if new startup Mighty Buildings, which launched from stealth mode this week, has its way. The company builds houses rapidly using a giant 3D printer and proprietary 3D printing material that, unlike concrete, hardens almost immediately thanks to a UV light curing process. This technique allows it to create houses with 95% fewer labor hours and significantly less waste than traditional construction techniques, which could be a game-changer in the construction field.

“The 3D printing, robotic post-processing, and the ability to automate steps like the pouring of insulation means that Mighty Buildings will be able to automate up to 80% of the construction process,” Sam Ruben, chief sustainability officer and co-founder of the company, told Digital Trends.

Read more
Inside the quest to 3D print a perfectly palatable steak
3D printed steak

As people grow more concerned about the impacts of the meat industry both on the environment and the animals involved, fake meats have experienced a boom in popularity. Products like Beyond Burger and Impossible Pork, for example, have captured the attention of vegans and vegetarians across the globe for their astonishingly meat-like tastes and textures. But while ground meat substitutes have made big strides in recent years, plant based versions of more choice cuts aren’t yet on the menu. Whole cuts of meat are the next milestone for the fake meat business, and companies around the world are sprinting to replicate the most iconic cut of all: Steak.

And they’re doing it through 3D printing.
Steak: Nature’s meaty masterpiece
Even the tastiest ground beef arrives in your kitchen as a mass of reddish flesh pressed into plastic or wax paper. Next to that, a good steak is a Michelangelo fresco, with layers of muscle fiber and fat.

Read more