Skip to main content

More life for Moore’s Law? Vortex laser may enable more powerful computers

laser vortex moores law vortexlasero
University at Buffalo
If you’ve ever wondered why modern smartphones possess many times the computational power of yesteryear’s room-size supercomputers, while costing just a fraction of the price, the answer was famously described by Moore’s Law. Named after the co-founder of Intel, Gordon E. Moore, Moore’s Law states that the overall processing power for computers will double approximately every two years, due to researchers’ ability to squeeze increasingly large numbers of components onto computer chips.

But while Moore’s Law has held true since 1965, in recent years speculation has arisen that it would soon stop holding true. Some researchers have even suggested that — unless something dramatic happened — it may not continue past the next five years.

Recommended Videos

A new research project carried out by researchers at the University at Buffalo’s School of Engineering and Applied Sciences and Polytechnic University of Milan in Italy may just be that “something dramatic.” The researchers have unveiled a new tiny laser which emits a beam of light in a whirlpool-style corkscrew pattern, which could be used to convey 10 times the amount of information currently carried by modern optical communication systems. The result may be a crucial component in the quest to build increasingly powerful computers into the foreseeable future.

Please enable Javascript to view this content

“Our microlaser is the first independent micro/nanoscale laser source emitting complex vector beams carrying the [orbital angular momentum] information available for an ultimate miniaturized optical communication platform,” Liang Feng, assistant professor at the University at Buffalo, told Digital Trends. Feng added that, “The use of orbital angular momentum (OAM) light is expected to enable the implementation of entirely new high-speed secure optical communication and quantum teleportation systems in a multidimensional space by encoding information with different OAM, satisfying the exponentially growing demand worldwide for network capacity.”

Feng notes that the technology is still currently firmly in the research stages, although a finished scaleable product could appear sooner than people think. “We are now working on electrically driven OAM microlasers such that the lasers can be integrated on an advanced signal processing chip or simply plugged in all kinds of optical comms applications,” he says. “The electrically driven OAM microlaser is expected in a year or so.”

And just when we were thinking we couldn’t like lasers any more than we already do.

Luke Dormehl
Former Digital Trends Contributor
I'm a UK-based tech writer covering Cool Tech at Digital Trends. I've also written for Fast Company, Wired, the Guardian…
Hyundai to offer free NACS adapters to its EV customers
hyundai free nacs adapter 64635 hma042 20680c

Hyundai appears to be in a Christmas kind of mood.

The South Korean automaker announced that it will start offering free North American Charging Standard (NACS) adapters in the first quarter of 2025.

Read more
Hyundai Ioniq 5 sets world record for greatest altitude change
hyundai ioniq 5 world record altitude change mk02 detail kv

When the Guinness World Records (GWR) book was launched in 1955, the idea was to compile facts and figures that could finally settle often endless arguments in the U.K.’s many pubs.

It quickly evolved into a yearly compilation of world records, big and small, including last year's largest grilled cheese sandwich in the world.

Read more
Global EV sales expected to rise 30% in 2025, S&P Global says
ev sales up 30 percent 2025 byd sealion 7 1stbanner l

While trade wars, tariffs, and wavering subsidies are very much in the cards for the auto industry in 2025, global sales of electric vehicles (EVs) are still expected to rise substantially next year, according to S&P Global Mobility.

"2025 is shaping up to be ultra-challenging for the auto industry, as key regional demand factors limit demand potential and the new U.S. administration adds fresh uncertainty from day one," says Colin Couchman, executive director of global light vehicle forecasting for S&P Global Mobility.

Read more