Skip to main content

Wild new ‘Trojan horse’ nanoparticle clears your arteries by gobbling up plaque

A hungry nanoparticle that enters your body and eats away at your insides sounds like a nightmare straight out of a Michael Crichton novel. In fact, it could be a future defense against heart attacks, strokes, and potentially other fatal diseases — as strange as that might initially sound.

Developed by scientists at Michigan State and Stanford universities, the innovative new “Trojan Horse” nanoparticle works by munching away portions of the plaques responsible for heart attacks. In a proof-of-concept demonstration, the researchers recently showed that their specially developed nanoparticle is able to accurately home in on atherosclerotic plaque, which is responsible for atherosclerosis, one of the leading causes of death in the United States.

“What the nanotherapy does is it enters inflammatory monocytes [a type of white blood cell] in the blood, and carries them into the plaque — hence the ‘Trojan Horse’ label — where they become macrophages, and stimulatesthose and other macrophages in plaque to devour cellular debris,” Bryan Smith, associate professor of biomedical engineering at MSU, told Digital Trends. “This ‘taking out the trash’ attribute stabilizes the plaque with minimal side effects.”

Other applications?

Nanoparticles that can fight heart attacks already sound potentially revolutionary. But Smith believes they could be used for other applications as well.

“One might ask: Can it treat cancer?” he said. “We think so. However, such other diseases require more speculation. This strategy improves on existing treatments because of its selectivity. The nanoparticle is exquisitely selective toward inflammatory monocytes and macrophages, which allows it to decrease side effects that may be associated with other treatments.”

The work has yet to progress to human trials. So far, the researchers have proven efficacy in a culture dish and in two types of mice that have developed atherosclerosis. They next plan to test large animal models and human tissues, as well as look at how their nanotherapy measures up to other available treatments. They’re also exploring how the nanoparticles could potentially be used as diagnostic imaging tools, highlighting particular cells.

A paper describing the work, titled “Pro-efferocytic nanoparticles are specifically taken up by lesional macrophages and prevent atherosclerosis,” was recently published in the journal Nature Nanotechnology.

Editors' Recommendations