Skip to main content

Stanford’s surprise discovery may lead to new breakthrough metamaterials

stanford
Greg Stewart/SLAC National Accelerator Laboratory
If comics have taught us anything, it is that the best advances are ones that happen by accident. That sums up a serendipitous discovery by scientists from the Department of Energy’s SLAC National Accelerator Laboratory and Stanford University. While using SLAC’s X-ray synchrotron to observe the synthesis of tiny nanocrystals, researchers were able to get a unique insight on the way these engineered “artificial atoms” can rapidly form superlattice nanostructures under the right conditions.

The discovery opens up the possibility of developing new materials with unique, specially tuned properties for use in magnetic storage, improved solar cells, optoelectronics, catalysis, and more. Because of the size of the artificial atoms, they are governed by quantum mechanics, which presents a new range of possibilities when it comes to their size, shape, and composition. Best of all, contrary to what was originally thought, such materials can be created in mere seconds.

Recommended Videos

“We are working to develop synthesis methods that would allow us to make small particles with precise control over their size and composition, at a scale of a billionth of a meter,” Matteo Cargnello, an assistant professor of chemical engineering at Stanford, told Digital Trends. “In order to do that, we developed a method to watch these tiny nanocrystals grow in a solution, using synchrotron light to ‘see’ live what happens while we make these crystals. We surprisingly found that at high temperatures, when particles start moving around much faster than at normal temperatures, these nanocrystals start to form and then attract each other into ordered structures in a matter of seconds. The positioning of the nanocrystals in these ordered assemblies can allow us to tune their properties and study interactions between the building blocks that can be relevant for applications of these tiny materials in several fields of materials science and chemical engineering.”

Please enable Javascript to view this content
Dawn Harmer/SLAC National Accelerator Laboratory
Dawn Harmer/SLAC National Accelerator Laboratory

The researchers’ discovery is described in a paper published in the journal Nature. Right now, the researchers are trying to gain a greater understanding of how these superlattices grow to make them more uniform and control their properties.

“There are still questions that require more work and investigations,” Cargnello said. “For example, we are not sure yet how the nanocrystals continue to grow in the solution even after they form the ordered assemblies. We [also] still want to dig deeper into the mechanism of superlattice formation, because this can help us transfer this knowledge to more complex material systems, with multiple components, and to increase the functionality of these materials.”

Make no mistake, though, this could be an enormously significant step in our quest to form new, cutting-edge metamaterials. Did we mention how much we are totally digging the current materials science revolution?

Luke Dormehl
Former Digital Trends Contributor
I'm a UK-based tech writer covering Cool Tech at Digital Trends. I've also written for Fast Company, Wired, the Guardian…
Teslas likely won’t get California’s new EV tax rebate
teslas likely wont get californias new ev tax rebate ap newsom 092320 01 1

California seems eager to reassert itself, not only as one of the largest economies in the world, but one where EVs will continue to thrive.

Governor Gavin Newsom has announced California will seek to revive state-tax rebates for electric vehicles should the incoming Trump administration carry out its plans to end the existing $7,500 federal incentive on EVs.

Read more
Kia PHEVs’ electric range will double to 60 miles
kia phevs electric range will double to 60 miles cq5dam thumbnail 1024 680

Besides making headlines about the wisdom, or lack thereof, of ending federal rebates on EVs in the U.S., Kia is setting its sights on doubling the range its plug-in hybrid vehicles (PHEVs) can run on while in electric mode.

With affordability and finding chargers remaining among the main hurdles to full EV adoption, drivers this year have increasingly turned to PHEVs, which can function in regular hybrid gas/electric mode, or in full electric mode. The issue for the latter, however, is that range has so far remained limited.

Read more
Volvo’s EX90 electric SUV features an Abbey Road sound system
volvo ex90 abbey road sound system 5 59366c

With deliveries of Volvo’s much-anticipated EX90 model finally coming through in the U.S., drivers who are also music fans may be heartened by discovering what the electric SUV’s sound system is made of.

They might even get a cosmic experience if they decide to play The Beatles’ 1965 classic hit Drive My Car on that sound system: The EX90 is the first vehicle ever to feature an Abbey Road Studios’ mode, providing a sound quality engineered straight out of the world’s most famous music recording studios. The Beatles enshrined Abbey Road in history, when they gave the studios' name to their last album in 1969.

Read more