Skip to main content

Can Voyager 2, exploring space beyond the solar system, survive a power glitch?

 

One of the most distant man-made objects in the universe, NASA’s Voyager 2, has suffered a glitch that caused it to consume more power than expected. Launched in 1977, Voyager 2 has followed its sibling Voyager 1 out beyond the bounds of the solar system and into interstellar space.

Recommended Videos

The problem began on Saturday, January 25, when the Voyager 2 spacecraft was supposed to execute a scheduled rotation maneuver, in which it rolls over 360 degrees to calibrate its magnetic field instrument. But the craft didn’t perform the maneuver, and two systems remained powered on longer than they should have, consuming more power than was intended.

An artist's concept depicts one of NASA's Voyager spacecraft entering interstellar space
This artist’s concept depicts one of NASA’s Voyager spacecraft entering interstellar space, or the space between stars. Interstellar space is dominated by the plasma, or ionized gas, that was ejected by the death of nearby giant stars millions of years ago. NASA/JPL-Caltech

When the craft draws too much from its power supply, automated protections kick in to prevent its power being drained completely. These automated protections turn off non-essential functions, such as the scientific instruments, to preserve as much power as possible.

The problem is that this affects Voyager 2’s ability to perform its science functions, so the engineers are keen to get the craft back to full operations as soon as possible. They are making progress toward this goal, according to an update shared this week: “As of January 28, Voyager engineers have successfully turned off one of the high-power systems and turned the science instruments back on but have not yet resumed taking data,” NASA reported in a blog post. “The team is now reviewing the status of the rest of the spacecraft and working on returning it to normal operations.”

The power supply used by Voyager 2 is a type called a radioisotope thermoelectric generator, which uses the decay of radioactive fuel Plutonium-238 to produce heat which is then converted into electricity. As the Plutonium-238 decays over time, the power the craft can produce drops by approximately 4 watts per year, meaning the engineers have to be increasingly careful with how they budget the available power.

Another challenge for the engineers is the distance between Voyager 2 and Earth. The craft left the solar system in 2018, passing the edge of the heliosphere which marks the end of the sun’s influence on space. Since then it has been investigating the interstellar medium, the vast space between stars. It is now approximately 11.5 billion miles (18.5 billion kilometers) away from the planet, meaning that it takes 17 hours for communications from Earth to reach the craft and another 17 hours for the craft to send a response.

It is estimated that there will not be enough power for any instruments to run by 2025. So throughout the rest of this year and beyond, NASA engineers will attempt to share the limited available power between Voyager 2’s various instruments. We have reached out to NASA for more information about the agency’s expectations for the longevity of the spacecraft and its current scientific work.

But it’s not necessarily the end of the adventure for this trailblazing craft, even once its power runs out and it can no longer communicate with Earth. Eventually, in 20,000 years’ time, Voyager 2 will reach the nearby star Proxima Centauri.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
Star Wars legend Ian McDiarmid gets questions about the Emperor’s sex life
Ian McDiarmid as the Emperor in Star Wars: The Rise of Skywalker.

This weekend, the Star Wars: Revenge of the Sith 20th anniversary re-release had a much stronger performance than expected with $25 million and a second-place finish behind Sinners. Revenge of the Sith was the culmination of plans by Chancellor Palpatine (Ian McDiarmid) that led to the fall of the Jedi and his own ascension to emperor. Because McDiarmid's Emperor died in his first appearance -- 1983's Return of the Jedi -- Revenge of the Sith was supposed to be his live-action swan song. However, Palpatine's return in Star Wars: Episode IX -- The Rise of Skywalker left McDiarmid being asked questions about his character's comeback, particularly about his sex life and how he could have a granddaughter.

While speaking with Variety, McDiarmid noted that fans have asked him "slightly embarrassing questions" about Palpatine including "'Does this evil monster ever have sex?'"

Read more
Waymo and Toyota explore personally owned self-driving cars
Front three quarter view of the 2023 Toyota bZ4X.

Waymo and Toyota have announced they’re exploring a strategic collaboration—and one of the most exciting possibilities on the table is bringing fully-automated driving technology to personally owned vehicles.
Alphabet-owned Waymo has made its name with its robotaxi service, the only one currently operating in the U.S. Its vehicles, including Jaguars and Hyundai Ioniq 5s, have logged tens of millions of autonomous miles on the streets of San Francisco, Los Angeles, Phoenix, and Austin.
But shifting to personally owned self-driving cars is a much more complex challenge.
While safety regulations are expected to loosen under the Trump administration, the National Highway Traffic Safety Administration (NHTSA) has so far taken a cautious approach to the deployment of fully autonomous vehicles. General Motors-backed Cruise robotaxi was forced to suspend operations in 2023 following a fatal collision.
While the partnership with Toyota is still in the early stages, Waymo says it will initially study how to merge its autonomous systems with the Japanese automaker’s consumer vehicle platforms.
In a recent call with analysts, Alphabet CEO Sundar Pichai signaled that Waymo is seriously considering expanding beyond ride-hailing fleets and into personal ownership. While nothing is confirmed, the partnership with Toyota adds credibility—and manufacturing muscle—to that vision.
Toyota brings decades of safety innovation to the table, including its widely adopted Toyota Safety Sense technology. Through its software division, Woven by Toyota, the company is also pushing into next-generation vehicle platforms. With Waymo, Toyota is now also looking at how automation can evolve beyond assisted driving and into full autonomy for individual drivers.
This move also turns up the heat on Tesla, which has long promised fully self-driving vehicles for consumers. While Tesla continues to refine its Full Self-Driving (FSD) software, it remains supervised and hasn’t yet delivered on full autonomy. CEO Elon Musk is promising to launch some of its first robotaxis in Austin in June.
When it comes to self-driving cars, Waymo and Tesla are taking very different roads. Tesla aims to deliver affordability and scale with its camera, AI-based software. Waymo, by contrast, uses a more expensive technology relying on pre-mapped roads, sensors, cameras, radar and lidar (a laser-light radar), that regulators have been quicker to trust.

Read more
Uber partners with May Mobility to bring thousands of autonomous vehicles to U.S. streets
uber may mobility av rides partnership

The self-driving race is shifting into high gear, and Uber just added more horsepower. In a new multi-year partnership, Uber and autonomous vehicle (AV) company May Mobility will begin rolling out driverless rides in Arlington, Texas by the end of 2025—with thousands more vehicles planned across the U.S. in the coming years.
Uber has already taken serious steps towards making autonomous ride-hailing a mainstream option. The company already works with Waymo, whose robotaxis are live in multiple cities, and now it’s welcoming May Mobility’s hybrid-electric Toyota Sienna vans to its platform. The vehicles will launch with safety drivers at first but are expected to go fully autonomous as deployments mature.
May Mobility isn’t new to this game. Backed by Toyota, BMW, and other major players, it’s been running AV services in geofenced areas since 2021. Its AI-powered Multi-Policy Decision Making (MPDM) tech allows it to react quickly and safely to unpredictable real-world conditions—something that’s helped it earn trust in city partnerships across the U.S. and Japan.
This expansion into ride-hailing is part of a broader industry trend. Waymo, widely seen as the current AV frontrunner, continues scaling its service in cities like Phoenix and Austin. Tesla, meanwhile, is preparing to launch its first robotaxis in Austin this June, with a small fleet of Model Ys powered by its camera-based Full Self-Driving (FSD) system. While Tesla aims for affordability and scale, Waymo and May are focused on safety-first deployments using sensor-rich systems, including lidar—a tech stack regulators have so far favored.
Beyond ride-hailing, the idea of personally owned self-driving cars is also gaining traction. Waymo and Toyota recently announced they’re exploring how to bring full autonomy to private vehicles, a move that could eventually bring robotaxi tech right into your garage.
With big names like Uber, Tesla, Waymo, and now May Mobility in the mix, the ride-hailing industry is evolving fast—and the road ahead looks increasingly driver-optional.

Read more