Skip to main content

What the heck is machine learning, and why is it everywhere these days?

machine learning
Image used with permission by copyright holder

Unless you’ve been living under a rock, ignoring every big tech advance in the past decade, you’ve probably heard of machine learning. Whether it’s better fraud detection and prevention, the handy online recommendations made by Netflix and Amazon, revolutionary facial recognition technology, or futuristic self-driving cars, machine learning is powering the current artificial intelligence revolution. But what is it exactly? Here’s a handy beginner’s guide.

Recommended Videos

What is machine learning, and why does it matter?

Machine learning is an approach to artificial intelligence that’s focused on making machines which can learn without being explicitly programmed. Learning is a profoundly important part of what makes us human. If we’re going to build AI that can carry out tasks with human-like intelligence, we therefore need to make machines that can learn for themselves, based on their past experiences.

This is different to the classical symbolic approach to AI, in which programmers create step-by-step rules for machines to follow, rather than allowing them to discover insights for themselves. While machine learning still involves this classical style of programming, it combines those basic rules with knowledge that computers are able to gather on their own to grow smarter.

Oh, and there’s a whole lot of statistics in there as well. Today, machine learning’s massive success has led to it becoming the most dominant subset of AI that is practiced around the world.

Can you give me a basic example of machine learning in action?

Absolutely. Machine learning can achieve some pretty impressive feats in AI (think self-driving cars or teaching robots to autonomously interact with the world around them), but it’s also responsible for simpler, but still incredibly useful applications.

One good illustration of machine learning in action is the so-called “spam” filter that your email system most likely uses to distinguish between useful emails and unsolicited junk mail. To do this, such filters will include rules entered by the programmer, to which it can add numbers that — when added up — will give a good indication of whether or not the software thinks the email is good to show you.

The problem is that rules are subjective. A rule that filters out emails with a low ratio of image to text isn’t so useful if you’re a graphic designer, who is likely to receive lots of useful emails that meet these parameters. As a result, machine learning allows the software to adapt to each user based on his or her own requirements. When the system flags some emails as spam, the user’s response to these emails (either reading or deleting them) will help train the AI agent to better deal with this kind of email in the future.

It’s simplistic compared to how we learn as humans, but it nonetheless achieves the result of creating an algorithm that improves its performance the more knowledge it receives.

I’ve heard of data mining. Is that the same thing?

Not quite. There are a lot of statistical tools involved in machine learning, and a good knowledge of math is going to help you as much on a machine learning course as speaking English will help you on an English literature course.

There’s definitely some crossover between the two fields, but the main distinction is that data mining is about drilling down into a dataset to find information. Machine learning is about using data to work out how to predict future outcomes, or to train a machine to perform a certain task.

One way we’ve heard it explained is that data mining is finding a list of dance centers in Portland; machine learning is learning how to dance.

Are there different types of machine learning?

You bet! The major way of dividing up machine learning is to focus on how the machine learns. There are four main approaches: supervised learning, unsupervised learning, semi-supervised learning, and reinforcement learning.

Supervised learning involves training data in which there is a desired output. (This is the category our spam filter algorithm falls into.) Next up is unsupervised learning, in which training data doesn’t have clear outputs. Then there’s semi-supervised learning, in which there are few desired outputs.

The other type of machine learning — which is increasingly popular these days — is reinforcement learning. This ambitious approach to machine learning involves rewarding an artificial agent based on what it does. Reinforcement learning can help machines achieve feats like figuring out how to play video games through trial-and-error, based on working out what increases its score.

Where do neural networks come into all of this?

Ah, yes: neural networks. If you’ve followed AI at all over the past decade (or read our handy recent explainer article) you’ve almost certainly come across these brain-inspired machine learning tools. Deep learning neural networks are a big part of machine learning today, but they’re not the only part.

Because the field is all about figuring out how best to fit data into models that can be utilized by people, a crucial step for machine learners is working out how best to represent knowledge when they set out to solve a problem. Neural networks are one example of how this might be achieved. Others include support vector machines, decision trees, genetic algorithms, and more.

Which programming languages to machine learners use?

Like the question above, there’s no one answer to this. Machine learning is a big field and, with so much ground to cover, there’s no one language that does absolutely everything.

Due to its simplicity, and the availability of deep learning libraries such as TensorFlow and PyTorch, Python is currently the number one language. If you’re thinking about delving into machine learning for the first time, it’s also one of the most accessible languages — and there are loads of online resources available.

Java is a good option, too, and comes with a great community of its own, while C++ and R are also worth checking out.

Is machine learning the perfect solution to all our AI problems?

You can probably guess where we’re going with this. No, machine learning isn’t infallible. Algorithms can still be subject to human biases, and the rule of “garbage in, garbage out” holds as true here as it does to any other data-driven field.

There are also questions about transparency, particularly when you’re dealing with the kind of “black boxes” that are an essential part of neural networks.

But as a tool that’s helping to revolutionize technology as we know it, and making AI available to the masses? You bet that it’s a great tool!

Luke Dormehl
Former Digital Trends Contributor
I'm a UK-based tech writer covering Cool Tech at Digital Trends. I've also written for Fast Company, Wired, the Guardian…
Star Wars legend Ian McDiarmid gets questions about the Emperor’s sex life
Ian McDiarmid as the Emperor in Star Wars: The Rise of Skywalker.

This weekend, the Star Wars: Revenge of the Sith 20th anniversary re-release had a much stronger performance than expected with $25 million and a second-place finish behind Sinners. Revenge of the Sith was the culmination of plans by Chancellor Palpatine (Ian McDiarmid) that led to the fall of the Jedi and his own ascension to emperor. Because McDiarmid's Emperor died in his first appearance -- 1983's Return of the Jedi -- Revenge of the Sith was supposed to be his live-action swan song. However, Palpatine's return in Star Wars: Episode IX -- The Rise of Skywalker left McDiarmid being asked questions about his character's comeback, particularly about his sex life and how he could have a granddaughter.

While speaking with Variety, McDiarmid noted that fans have asked him "slightly embarrassing questions" about Palpatine including "'Does this evil monster ever have sex?'"

Read more
Waymo and Toyota explore personally owned self-driving cars
Front three quarter view of the 2023 Toyota bZ4X.

Waymo and Toyota have announced they’re exploring a strategic collaboration—and one of the most exciting possibilities on the table is bringing fully-automated driving technology to personally owned vehicles.
Alphabet-owned Waymo has made its name with its robotaxi service, the only one currently operating in the U.S. Its vehicles, including Jaguars and Hyundai Ioniq 5s, have logged tens of millions of autonomous miles on the streets of San Francisco, Los Angeles, Phoenix, and Austin.
But shifting to personally owned self-driving cars is a much more complex challenge.
While safety regulations are expected to loosen under the Trump administration, the National Highway Traffic Safety Administration (NHTSA) has so far taken a cautious approach to the deployment of fully autonomous vehicles. General Motors-backed Cruise robotaxi was forced to suspend operations in 2023 following a fatal collision.
While the partnership with Toyota is still in the early stages, Waymo says it will initially study how to merge its autonomous systems with the Japanese automaker’s consumer vehicle platforms.
In a recent call with analysts, Alphabet CEO Sundar Pichai signaled that Waymo is seriously considering expanding beyond ride-hailing fleets and into personal ownership. While nothing is confirmed, the partnership with Toyota adds credibility—and manufacturing muscle—to that vision.
Toyota brings decades of safety innovation to the table, including its widely adopted Toyota Safety Sense technology. Through its software division, Woven by Toyota, the company is also pushing into next-generation vehicle platforms. With Waymo, Toyota is now also looking at how automation can evolve beyond assisted driving and into full autonomy for individual drivers.
This move also turns up the heat on Tesla, which has long promised fully self-driving vehicles for consumers. While Tesla continues to refine its Full Self-Driving (FSD) software, it remains supervised and hasn’t yet delivered on full autonomy. CEO Elon Musk is promising to launch some of its first robotaxis in Austin in June.
When it comes to self-driving cars, Waymo and Tesla are taking very different roads. Tesla aims to deliver affordability and scale with its camera, AI-based software. Waymo, by contrast, uses a more expensive technology relying on pre-mapped roads, sensors, cameras, radar and lidar (a laser-light radar), that regulators have been quicker to trust.

Read more
Uber partners with May Mobility to bring thousands of autonomous vehicles to U.S. streets
uber may mobility av rides partnership

The self-driving race is shifting into high gear, and Uber just added more horsepower. In a new multi-year partnership, Uber and autonomous vehicle (AV) company May Mobility will begin rolling out driverless rides in Arlington, Texas by the end of 2025—with thousands more vehicles planned across the U.S. in the coming years.
Uber has already taken serious steps towards making autonomous ride-hailing a mainstream option. The company already works with Waymo, whose robotaxis are live in multiple cities, and now it’s welcoming May Mobility’s hybrid-electric Toyota Sienna vans to its platform. The vehicles will launch with safety drivers at first but are expected to go fully autonomous as deployments mature.
May Mobility isn’t new to this game. Backed by Toyota, BMW, and other major players, it’s been running AV services in geofenced areas since 2021. Its AI-powered Multi-Policy Decision Making (MPDM) tech allows it to react quickly and safely to unpredictable real-world conditions—something that’s helped it earn trust in city partnerships across the U.S. and Japan.
This expansion into ride-hailing is part of a broader industry trend. Waymo, widely seen as the current AV frontrunner, continues scaling its service in cities like Phoenix and Austin. Tesla, meanwhile, is preparing to launch its first robotaxis in Austin this June, with a small fleet of Model Ys powered by its camera-based Full Self-Driving (FSD) system. While Tesla aims for affordability and scale, Waymo and May are focused on safety-first deployments using sensor-rich systems, including lidar—a tech stack regulators have so far favored.
Beyond ride-hailing, the idea of personally owned self-driving cars is also gaining traction. Waymo and Toyota recently announced they’re exploring how to bring full autonomy to private vehicles, a move that could eventually bring robotaxi tech right into your garage.
With big names like Uber, Tesla, Waymo, and now May Mobility in the mix, the ride-hailing industry is evolving fast—and the road ahead looks increasingly driver-optional.

Read more