Skip to main content

Deep-learning A.I. is helping archaeologists translate ancient tablets

Deep-learning artificial intelligence is helping grapple with plenty of problems in the modern world. But it also has its part to play in helping solve some ancient problems as well — such as assisting in the translation of 2,500-year-old clay tablet documents from Persia’s Achaemenid Empire.

These tablets, which were discovered in modern-day Iran in 1933, have been studied by scholars for decades. However, they’ve found the translation process for the tablets — which number in the tens of thousands — to be laborious and prone to errors. A.I. technology can help.

“We have initial experiments applying machine learning to identify which cuneiform symbols are present in images of a tablet,” Sanjay Krishnan, assistant professor at the University of Chicago’s Department of Computer Science, told Digital Trends. “Machine learning works by extrapolating patterns from human-labeled examples, and this allows us to automate the annotations in the future. We envision that it is a step toward significant automation in the analysis and study of these tablets.”

In this case, the human-labeled examples are annotated tablets from the Persepolis Fortification Archive’s (PFA) Online Cultural and Historical Research Environment (OCHRE) dataset. In DeepScribe, a collaboration between researchers from the University of Chicago’s Oriental Institute and its Department of Computer Science, they used a training set of more than 6,000 annotated images to build a neural network able to read unanalyzed tablets in the collection.

DeepScribe project 1
OI

When the algorithm was tested on other tablets, it was able to translate the cuneiform signs with an accuracy level of around 80%. The hope is to increase this benchmark in the future. Even if that doesn’t happen, though, the system could be used to translate large amounts of the tablets, leaving human scholars to focus their efforts on the really difficult bits.

“Cuneiform is a script used since the third millennium BCE to write multiple languages including Sumerian, Akkadian, and Elamite,” Susanne Paulus, associate professor for Assyriology, told Digital Trends.

Cuneiform poses a series of particular challenges for machine translation. Firstly, it was written by impressing a reed stylus into wet clay. This makes cuneiform one of very few three-dimensional script systems. Secondly, cuneiform is a complex script system using hundreds of signs. Each sign has different meanings depending on its context. Thirdly, cuneiform tablets are ancient artifacts. They are often broken and hard to decipher, which means reading one tablet can take days.

“So far, we have an initial prototype that suggests that such techniques are very effective in a controlled setting,” Krishnan said. “Given a clean image of a single symbol, [we can] determine what the symbol is. Our next step is to develop more robust models that account for context and data quality.”

Editors' Recommendations

Luke Dormehl
I'm a UK-based tech writer covering Cool Tech at Digital Trends. I've also written for Fast Company, Wired, the Guardian…
The future of A.I.: 4 big things to watch for in the next few years
brain with computer text scrolling artificial intelligence

A.I. isn’t going to put humanity on the scrap heap any time soon. Nor are we one Google DeepMind publication away from superintelligence. But make no mistake about it: Artificial intelligence is making enormous strides.

As noted in the Artificial Intelligence Index Report 2021, last year the number of journal publications in the field grew by 34.5%. That’s a much higher percentage than the 19.6% seen one year earlier. A.I. is going to transform everything from medicine to transportation, and there are few who would argue otherwise.

Read more
Google’s LaMDA is a smart language A.I. for better understanding conversation
LaMDA model

Artificial intelligence has made extraordinary advances when it comes to understanding words and even being able to translate them into other languages. Google has helped pave the way here with amazing tools like Google Translate and, recently, with its development of Transformer machine learning models. But language is tricky -- and there’s still plenty more work to be done to build A.I. that truly understands us.
Language Model for Dialogue Applications
At Tuesday’s Google I/O, the search giant announced a significant advance in this area with a new language model it calls LaMDA. Short for Language Model for Dialogue Applications, it’s a sophisticated A.I. language tool that Google claims is superior when it comes to understanding context in conversation. As Google CEO Sundar Pichai noted, this might be intelligently parsing an exchange like “What’s the weather today?” “It’s starting to feel like summer. I might eat lunch outside.” That makes perfect sense as a human dialogue, but would befuddle many A.I. systems looking for more literal answers.

LaMDA has superior knowledge of learned concepts which it’s able to synthesize from its training data. Pichai noted that responses never follow the same path twice, so conversations feel less scripted and more responsively natural.

Read more
How the USPS uses Nvidia GPUs and A.I. to track missing mail
A United States Postal Service USPS truck driving on a tree-lined street.

The United States Postal Service, or USPS, is relying on artificial intelligence-powered by Nvidia's EGX systems to track more than 100 million pieces of mail a day that goes through its network. The world's busiest postal service system is relying on GPU-accelerated A.I. systems to help solve the challenges of locating lost or missing packages and mail. Essentially, the USPS turned to A.I. to help it locate a "needle in a haystack."

To solve that challenge, USPS engineers created an edge A.I. system of servers that can scan and locate mail. They created algorithms for the system that were trained on 13 Nvidia DGX systems located at USPS data centers. Nvidia's DGX A100 systems, for reference, pack in five petaflops of compute power and cost just under $200,000. It is based on the same Ampere architecture found on Nvidia's consumer GeForce RTX 3000 series GPUs.

Read more