Skip to main content

No more scraping? Anti-frosting advance could mark end of frozen windshields

Virginia Tech

With autonomous and flying cars on the horizon, there’s a whole lot that we’re excited about in the automotive world. But ask us on a frosty Monday morning in darkest winter as we’re scraping the ice off our windshield while muttering curse words under our breath, and you’ll find us to be a lot less enthused. In those moments, the car-related technology we want more than anything else in the world is a frost-resistant windshield.

Fortunately, researchers from Virginia Tech appear to have heard our agonized prayers. With this precise goal in mind, they have invented what they claim to be the world’s first passive anti-frosting surface, which is capable of staying 90 percent dry and frost free in frigid conditions. And all without the need for chemical or energy inputs to make it work.

Recommended Videos

“Everyone is familiar with the concept of laying salts down on the ground before a big snowstorm,” Jonathan Boreyko, assistant professor in the Department of Biomedical Engineering and Mechanics, told Digital Trends. “Salts are a hygroscopic chemical, which means that they are a very good humidity sink, capable of sucking up nearby moisture and water to keep the surrounding surface dry.

“However, there are two big problems with using salts to combat icing. First, as the salt crystals absorb water from the air and surrounding ice, they become diluted and quickly lose their hygroscopic properties. This is why we have to lay down salt over and over again, to the tune of about 10 million tons per year in the U.S. alone. Second, the practice of laying down salts has been well-established to contaminate the environment, especially the groundwater.”

What the Virginia Tech researchers have done is to take this concept of using a hygroscopic chemical to minimize frosting as a starting point. But instead of using salt, they machined patterns of micro-grooves into the surface of sample material they created. These microscopic grooves function as sacrificial areas, creating stripes of intentional ice when it is freezing. Because ice has the same low-pressure properties as salts, the intermediate areas between these stripes stay completely dry from condensation or frost, since the humid air is instead attracted to the ice stripes.

“We are currently in serious talks with both aerospace and heating, ventilation, and air conditioning (HVAC) companies to see if we can apply this technology to airplanes or the outdoor heat exchanger of heat pumps,” Boreyko said. “The heat pump idea, for example, would involve patterning the ice stripes on the array of micro-fins that are already on the outer portion of an outdoor heat exchanger, to keep the interior of the unit dry from frost.”

A paper describing this research was recently published in the journal ACS Applied Materials & Interfaces.

Luke Dormehl
I'm a UK-based tech writer covering Cool Tech at Digital Trends. I've also written for Fast Company, Wired, the Guardian…
Zoox recalls robotaxis after Las Vegas crash, citing software fix
zoox recall crash 1739252352 robotaxi side profile in dark mode

Amazon's self-driving vehicle unit, Zoox, has issued a voluntary safety recall after one of its autonomous vehicles was involved in a minor collision in Las Vegas. The incident, which occurred in April 2025, led the company to investigate and identify a software issue affecting how the robotaxi anticipates another vehicle’s path.
The recall, affecting 270 Zoox-built vehicles, was formally filed with the National Highway Traffic Safety Administration (NHTSA). Zoox said the issue has already been addressed through a software update that was remotely deployed to its fleet.
Zoox’s robotaxis, which operate without driving controls like a steering wheel or pedals, are part of Amazon’s entry into the autonomous driving space. According to Zoox’s safety recall report, the vehicle failed to yield to oncoming traffic while making an unprotected left turn, leading to a low-speed collision with a regular passenger car. While damage was minor, the event raised flags about the system’s behavior in complex urban scenarios.
Establishing safety and reliability remain key factors in the deployment of the relatively new autonomous ride-hailing technology. Alphabet-owned Waymo continues to lead the sector in both safety and operational scale, with services active in multiple cities including Phoenix and San Francisco. But GM’s Cruise and Ford/VW-backed Argo AI were forced to abandon operations over the past few years.
Tesla is also expected to enter the robotaxi race with the launch of its own service in June 2025, leveraging its Full Self-Driving (FSD) software. While FSD has faced heavy regulatory scrutiny through last year, safety regulations are expected to loosen under the Trump administration.
Zoox, which Amazon acquired in 2020, says it issued the recall voluntarily as part of its commitment to safety. “It’s essential that we remain transparent about our processes and the collective decisions we make,” the company said in a statement.

Read more
Mitsubishi’s back in the EV game—with a new electric SUV coming in 2026
mitsubishi bev 2026 momentum 2030 line up

Mitsubishi is officially jumping back into the U.S. electric vehicle scene—and this time, it’s not just dipping a toe. The company confirmed it will launch a brand-new battery-electric SUV in North America starting in summer 2026, marking its first fully electric model here since the quirky little i-MiEV left the stage back in 2017.
The new EV will be a compact crossover, and while Mitsubishi is keeping most of the juicy details under wraps, we do know it’ll be based on the same next-gen platform as the upcoming Nissan Leaf. That means it’ll ride on the CMF-EV architecture—the same one underpinning the Nissan Ariya—which supports ranges of up to 300+ miles. So yeah, this won’t be your average entry-level EV.
Designed in partnership with Nissan, the new model will be built in Japan and shipped over to U.S. shores. No word yet on pricing, battery size, or even a name, but Mitsubishi has made it clear this EV is just the beginning. As part of its “Momentum 2030” plan, the company promises a new or updated vehicle every year through the end of the decade, with four electric models rolling out by 2028. And yes, one of those might even be a pickup.
Mitsubishi says the goal is to give customers “flexible powertrain options,” which is marketing speak for: “We’ll have something for everyone.” So whether you're all-in on electric or still into gas or hybrid power, they're aiming to have you covered.
This mystery EV will eventually sit alongside Mitsubishi’s current U.S. lineup—the Outlander, Outlander PHEV, Eclipse Cross, and Outlander Sport—and help the brand move beyond its current under-the-radar status in the electric world.
In short: Mitsubishi’s finally getting serious about EVs, and if this new SUV lives up to its potential, it might just put the brand back on your radar.

Read more
Toyota unveils 2026 bZ: A smarter, longer-range electric SUV
toyota bz improved bz4x 2026 0007 1500x1125

Toyota is back in the electric SUV game with the 2026 bZ, a major refresh of its bZ4X that finally delivers on two of the biggest demands from EV drivers: more range and faster charging.
The headline news is the improved driving range. Toyota now estimates up to 314 miles on a single charge for the front-wheel-drive model with the larger 74.7-kWh battery—about 60 miles more than the outgoing bZ4X. All-wheel-drive variants also get a boost, with up to 288 miles of range depending on trim.
Charging speeds haven’t increased in terms of raw kilowatts (still capped at 150 kW for DC fast charging), but Toyota has significantly improved how long peak speeds are sustained. With preconditioning enabled—especially helpful in colder weather—the new bZ can charge from 10% to 80% in about 30 minutes. Also new: Plug and Charge support for automatic payment at compatible stations and full adoption of the North American Charging Standard (NACS), meaning access to Tesla Superchargers will be standard by 2026.
Under the hood, or rather the floor, Toyota has swapped in higher-performance silicon carbide components to improve efficiency and power delivery. The AWD version now produces up to 338 horsepower and sprints from 0–60 mph in a brisk 4.9 seconds.
Toyota didn’t stop at just the powertrain. The exterior has been cleaned up, with body-colored wheel arches replacing the black cladding, and a sleeker front fascia. Inside, a larger 14-inch touchscreen now houses climate controls, giving the dash a more refined and less cluttered appearance. There’s also more usable storage thanks to a redesigned center console.
With the 2026 bZ, Toyota seems to be responding directly to critiques of the bZ4X. It’s faster, more efficient, and more driver-friendly—finally bringing Toyota’s EV efforts up to speed.

Read more