Skip to main content

This tiny robot could help surgeons perform ultra-delicate procedures

Origami Miniature Surgical Manipulator

It goes without saying that surgeons need steady hands. But how steady those hands need to be depends a lot on the kind of procedure the surgeons are carrying out at the time. An amputation might require less fine-grain, subtle precision than, say, a mastectomy. And a mastectomy might require less agonizing defusing-a-nuclear-bomb dexterity than minimally invasive laparoscopic surgery, in which tiny tools and an impossibly minuscule camera are inserted into a small incision to carry out an operation.

Simply put: At some point, human hands lack the delicate movement necessary to carry out the procedure in question. Fortunately, there’s a surgical robot that could help.

Developed as a collaboration between the Wyss Institute at Harvard University and a Sony robotics engineer, a new origami-inspired miniature robot manipulator promises to help improve the precision and control needed for teleoperated surgery. The robot manipulator in question — mini-RCM — can be controlled by a human operator and is capable of translating their hand movements into much tinier movements for carrying out tasks like laparoscopic surgery. According to its creators, the robot platform is around the size of a tennis ball and weighs the same as a penny.

Origami surgical robot
Wyss Institute at Harvard University

“The microsurgery robot market is a growing market, estimated [to reach] $1.7 billion in 2024,” Hiroyuki Suzuki of Sony told Digital Trends. “The robotic devices in this field require high precision and compactness and [must be] lightweight because of [their usage in a] operating room. [With our work], we have suggested the way to achieve the super compact and lightweight manipulator for the teleoperated microsurgery.”

While the robot has yet to carry out actual surgery, its creators have tested it out following the movement of a human operator’s hand as they control a pen-like tool. One of the tests involved copying the human as they draw a square shape — but drawing one so scaled-down in size that it is actually smaller than the tip of a ballpoint pen. Compared to a human attempting this, the robot version reduced errors by 68 percent. In a less trivial surgical task, this could be crucial when it comes to helping repair tiny, delicate structures in the body.

“We are not in the commercial phase, but now on the research and development phase,” Suzuki said. “[So far] we have validated the potential of the mini-RCM for the teleoperated microsurgery.”

A paper describing the work was recently published in the journal Nature Machine Intelligence, where it was featured on the cover.

Editors' Recommendations

Luke Dormehl
I'm a UK-based tech writer covering Cool Tech at Digital Trends. I've also written for Fast Company, Wired, the Guardian…
Giving robots a layer of fat could help supercharge their battery life
BYU's Robot King Louie being built by NASA

Structural, rechargeable zinc battery

Robots could be on course to get fatter -- and it’s for their own good. In an effort to solve one of the biggest problems in current robotics, a lack of battery life, researchers at the University of Michigan have developed a new rechargeable zinc battery that could be worn around robots like a layer of fat. This could provide them with up to 72 times more power capacity than they get from today’s commonly used lithium-ion batteries.

Read more
This tiny robot tank could one day help doctors explore your intestine
Endoculous

With a bulky, armored appearance, heavy duty treads for gripping, and a claw arm on the front, the Endoculus robot vehicle looks like it belongs on the battlefield. In fact, it’s just 3 cm wide, 2.3 cm tall, and designed for an entirely different kind of inhospitable environment: Your intestine.

“[This] robotic capsule endoscope, Endoculus, is a tethered robot designed for colonoscopy applications,” Mark Rentschler, a mechanical engineering professor in the Advanced Medical Technologies Laboratory at the University of Colorado, told Digital Trends. “The goals are twofold: design a platform for a robot endoscope in the gastrointestinal tract, and enable autonomous capabilities to assist physicians with disease diagnosis and treatment during these procedures.”

Read more
Robotic rubdown: New robo-masseuse could make its way into your home
Massage robot thumbnail 1

Massage robot demo

Robots are all about automating certain pain points, whether that’s Roombas carrying out the vacuuming in our home or Starship Technologies-style delivery robots grabbing takeout food and bringing it to us wherever we happen to be at the time. A new home massage robot developed by researchers from the U.K.’s University of Plymouth takes this idea of pain points quite literally -- by promising to rub and knead them out of your shoulders and back whenever and however you require.

Read more