Skip to main content

Saturn’s moon Titan may be more Earth-like than we thought

Saturn’s moon Titan is one of the top destinations to search for life in our solar system, a tantalizing possibility that will be investigated by NASA’s Dragonfly rotorcraft which it launches to visit there in 2027. It is a strange place, with a thick atmosphere, rivers and lakes on its surface composed of liquid methane and ethane, then an icy crust, and a possible ocean of liquid water beneath. Now, new research suggests that this alien world might have more in common with Earth than previously thought, at least in terms of its seasonal cycle.

Researchers from Stanford University and NASA’s Jet Propulsion Laboratory have used computer models to analyze how Titan’s surface features like its dunes and plains might have formed. In between the rivers which cover its icy surface, there are also hydrocarbon sand dunes. Titan is considered potentially habitable because, in addition to being the only moon in the solar system known to have a substantial atmosphere, it has a seasonal liquid cycle that is comparable to Earth’s water cycle, with liquid running over the surface and evaporating up into clouds before raining down again. But instead of this cycle occurring with water, on Titan, it occurs with liquid methane and ethane.

These three mosaics of Titan were composed with data from Cassini’s visual and infrared mapping spectrometer taken during the last three Titan flybys, on Oct. 28, 2005 (left), Dec. 26, 2005 (middle), and Jan. 15, 2006 (right). In a new study, researchers have shown how Titan’s distinct dunes, plains, and labyrinth terrains could be formed.
These three mosaics of Titan were composed with data from Cassini’s visual and infrared mapping spectrometer taken during the last three Titan flybys, on Oct. 28, 2005 (left), Dec. 26, 2005 (middle), and Jan. 15, 2006 (right). In a new study, researchers have shown how Titan’s distinct dunes, plains, and labyrinth terrains could be formed. NASA / JPL / University of Arizona

This seasonal cycle affects how dunes are created as well, formed from hydrocarbons which create sand grains. But sands on Earth are formed from robust silicate grains, and sands on Titan are formed from soft compounds which usually wear down into fine dust. How these compounds could form into grains that make dunes that have lasted for hundreds of thousands of years was an open question.

Recommended Videos

“As winds transport grains, the grains collide with each other and with the surface,” lead author Mathieu Lapôtre explained the problem in a statement. “These collisions tend to decrease grain size through time. What we were missing was the growth mechanism that could counterbalance that and enable sand grains to maintain a stable size through time.”

Please enable Javascript to view this content

The researchers found that the answer could be due to a process called sintering, in which a bunch of fine particles joins together into a solid mass due to heat or pressure. This lets the grains grow in size, and is balanced out by the wear and tear of erosion which makes the grains smaller.

This, combined with the seasonal cycle on the moon, can explain how Titan ended up with sand dunes around its equator, plains around the mid-latitudes, and a type of complex terrain called labyrinth terrain near the poles. The different terrains are formed by different amounts of winds, which carry the sediment around, and rainfall and the flowing of rivers, which carve out structures in the terrain. That makes for a seasonal system remarkably similar to Earth’s in some ways, although using different compounds.

“We’re showing that on Titan – just like on Earth and what used to be the case on Mars – we have an active sedimentary cycle that can explain the latitudinal distribution of landscapes through episodic abrasion and sintering driven by Titan’s seasons,” Lapôtre said. “It’s pretty fascinating to think about how there’s this alternative world so far out there, where things are so different, yet so similar.”

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
The iPhone 16 Pro could be more expensive than you thought
A person holding the Apple iPhone 15 Pro Max.

We're only a few days away from Apple's "It's Glowtime" event (on September 9, this coming Monday), and more information has come out about the iPhone 16 and its possible price. Spoiler: It could be more expensive than you thought. That's not wholly unexpected given the number of expected upgrades and improvements, but it's not the most welcome news.

According to TrendForce, both iPhone 16 models might feature a base storage of 256GB. That's a good improvement; 128GB doesn't leave much room for apps or photos after accounting for the operating system. Doing away with that lower-level storage means the starting price will be higher, though.

Read more
Juice spacecraft snaps images of the Earth and moon as it passes by
This image of our own Moon was taken during Juice’s lunar-Earth flyby on 19 August 2024. The main aim of JANUS’s observations during the lunar-Earth flyby was to evaluate how well the instrument is performing, not to make scientific measurements.

The European Space Agency's Juice spacecraft recently made a flyby of both Earth and the moon on its way to Jupiter. The purpose of the flyby was mainly to adjust the spacecraft's speed and direction, to help send it on its long journey to investigate Jupiter and its icy moons. But as the spacecraft flew within a few thousand miles of the Earth's surface, it was able to use its instruments to snap pictures of both the Earth and the moon.

The Juice spacecraft's main camera is called Janus, which will take high-resolution images of Jupiter's moons to identify surface features, as well as observing the clouds of Jupiter. The flyby gave the opportunity to test this instrument on both the moon, which has no atmosphere and is so comparable to the moons of Jupiter, and the Earthm which has a cloud layer that can serve as a stand-in for the thick atmosphere of Jupiter.

Read more
Juice spacecraft slingshots around Earth and moon in world’s first maneuver
juice earth moon flyby waves goodbye once again pillars

The Juice spacecraft, a European Space Agency mission to visit the icy moons of Jupiter, has just made a world's first maneuver. This week, the craft swung back to Earth on its way to Jupiter and used both Earth and the moon's gravity to slingshot it onward, in the first lunar-Earth flyby.

When you think about spacecraft traveling to distant parts of the solar system, you might imagine them pointing directly toward their targets and traveling in a straight line. But that uses an awful lot of fuel, as the spacecraft needs to overcome the gravity of various bodies. It is much more efficient in terms of fuel usage to travel in a series of circular orbits, gradually adjusting course to move out in a spiral pattern with the sun at the center. This takes more time but less of the precious fuel that is so heavy to carry.

Read more