Skip to main content

X-ray data from Chandra gives a new view of Webb’s first images

This week has been a fun time for telescope team-ups, with a recent project combining data from the James Webb and Hubble Space Telescopes. There’s also a second set of images that has been released that combines data from the James Webb Space Telescope and the Chandra X-ray Observatory.

The Chandra observatory, which is also a space-based telescope, looks in the X-ray wavelength to investigate phenomena like epic kilonova explosions, search for the universe’s missing matter, and capture stunning images of the universe as seen in X-ray observations. It has even been used to detect a possible exoplanet in the Whirlpool galaxy. Now, it has turned its sights on the targets of James Webb’s first images to show these now-famous objects in a new light.

X-rays from Chandra have been combined with infrared data from early publicly-released James Webb Space Telescope images.
X-rays from Chandra have been combined with infrared data from early publicly-released James Webb Space Telescope images. Credit: X-ray: NASA/CXC/SAO; IR (Spitzer): NASA/JPL-Caltech; IR (Webb): NASA/ESA/CSA/STScI

Clockwise from top left, these images show Stephan’s Quintet, the Cartwheel Galaxy, the Carine Nebula, and the first Webb deep field. The Chandra X-ray data has been added to the original images in shades of blue and purple, picking out the X-rays being given off by things like extremely hot gas, bright young stars, or by black holes or neutron stars which are feeding on nearby sources of matter.

Compared to Webb’s infrared view, Chandra observes even higher energy X-rays, which are given off by very high energy processes. By looking at both of these wavelengths, astronomers can pick out phenomena which would otherwise be invisible. In Stephan’s Quintet, for example, a group of five close galaxies, the Chandra data revealed a shockwave caused by two of the galaxies colliding into each other at 2 million miles per hour. This shockwave is heating up gas to tens of millions of degrees. In the Carina Nebula image, the X-rays shown in purple pick out some of the hottest and most massive young stars.

These images show that, as powerful as Webb is alone, it is becomes even more so when used along with other tools. “[Webb] is designed to work in concert with NASA’s many other telescopes as well as facilities both in space and on the ground,” NASA said. “These new versions of Webb’s first images combine its infrared data with X-rays collected by NASA’s Chandra X-ray Observatory, underscoring how the power of any of these telescopes is only enhanced when joined with others.”

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
James Webb image shows the majesty of the most massive known galaxy cluster
Webb’s infrared image of the galaxy cluster El Gordo (“the Fat One”) reveals hundreds of galaxies, some never before seen at this level of detail. El Gordo acts as a gravitational lens, distorting and magnifying the light from distant background galaxies. Two of the most prominent features in the image include the Thin One, located just below and left of the image center, and the Fishhook, a red swoosh at upper right. Both are lensed background galaxies.

A recent image from the James Webb Space Telescope shows the most massive galaxy cluster we know of -- one so large that it is nicknamed El Gordo, or the fat one. Thought to have a mass of over 2 quadrillion times the mass of the sun, the cluster is located 7 billion light-years away and hosts hundreds of galaxies that are gravitationally bound together.

The image was taken using Webb's NIRCam instrument, which was able to capture the most detailed look yet at this enormous cluster and the many galaxies within it.

Read more
James Webb spots ancient dust that could be from the earliest supernovas
This image highlights the location of the galaxy JADES-GS-z6 in a portion of an area of the sky known as GOODS-South, which was observed as part of the JWST Advanced Deep Extragalactic Survey, or JADES.

Dust might not sound like the most interesting of topics, but to a certain set of astronomers, it's thrilling. Researchers recently used the James Webb Space Telescope to identify grains of dust from the early universe, which could have been produced by the earliest supernovas.

James Webb is a powerful tool because it allows researchers to identify extremely distant, and therefore extremely old, galaxies. Webb can be used to not only identify these early galaxies but also to take spectra from them, which can reveal their chemical composition by seeing which wavelengths of light they absorb. As part of a survey called JWST Advanced Deep Extragalactic Survey or JADES, Webb's NIRCam instrument took this image of a region of the sky called GOODS-South. Within that image, researchers used Webb's NIRSpec instrument to look at the spectra of early galaxies like JADES-GS-z6.

Read more
See the stunning image James Webb took to celebrate its first birthday
The first anniversary image from the NASA/ESA/CSA James Webb Space Telescope displays star birth like it’s never been seen before, full of detailed, impressionistic texture. The subject is the Rho Ophiuchi cloud complex, the closest star-forming region to Earth. It is a relatively small, quiet stellar nursery, but you’d never know it from Webb’s chaotic close-up. Jets bursting from young stars crisscross the image, impacting the surrounding interstellar gas and lighting up molecular hydrogen, shown in red. Some stars display the telltale shadow of a circumstellar disc, the makings of future planetary systems.

Today marks the one-year anniversary of the first images shared from the James Webb Space Telescope, and to celebrate this milestone NASA has shared yet another gorgeous image of space captured by Webb.

The new image shows a star system called Rho Ophiuchi; a busy region where new stars are being born amide swirls of dust and gas. Located just 390 light-years away, Webb was able to capture the region in stunning detail using its NIRCam instrument.

Read more