Skip to main content
  1. Home
  2. Space
  3. News

See a new star being born in stunning James Webb image

The James Webb Space Telescope has captured a stunning image of the birth of a new star. As dust and gas clump together and eventually collapses under the force of gravity, it becomes a protostar: the core of a new star, rotating and forming a magnetic field, throwing off material in two dramatic jets of gas.

This process is on display in this image of the cloud L1527, taken using Webb’s NIRCam instrument. Looking in the infrared, this camera can capture the clouds of material given off by the protostar which would be invisible to the human eye.

The protostar L1527, shown in this image from the NASA/ESA/CSA James Webb Space Telescope.
The protostar L1527, shown in this image from the NASA/ESA/CSA James Webb Space Telescope, is embedded within a cloud of material that is feeding its growth. Material ejected from the star has cleared out cavities above and below it, whose boundaries glow orange and blue in this infrared view. The upper central region displays bubble-like shapes due to stellar ‘burps,’ or sporadic ejections. Webb also detects filaments made of molecular hydrogen that has been shocked by past stellar ejections. Intriguingly, the edges of the cavities at the upper left and lower right appear straight, while the boundaries at the upper right and lower left are curved. The region at the lower right appears blue, as there’s less dust between it and Webb than the orange regions above it. NASA, ESA, CSA, and STScI, J. DePasquale (STScI)

In the image, the protostar itself can’t be seen but is located right in the center of the hourglass shape. That shape is formed from clouds of dust and gas which are shaped by the jets given off by the protostar, with thinner areas of dust appearing blue and thicker areas appearing orange. In addition to the dust, there are also filaments of hydrogen gas visible, shaped by ejections from the protostar.

Recommended Videos

Researchers estimate that this protostar is around 100,000 years old, making it a baby by stellar standards. For comparison, our sun is around 4.6 billion years old and is expected to live to around 9 to 10 billion years of age. The protostar is also smaller than our sun, at between 20 to 40% of its mass, and most importantly it is not yet producing heat through fusion.

The protostar will continue gathering dust and gas and increasing in mass. As this material falls into the protostar due to gravity, it heats up because of friction. To start fusing hydrogen, the protostar needs to reach a core temperature of around 10 million degrees Kelvin. At this temperature, the gases become plasma, and hydrogen atoms start fusing together to form helium, releasing energy in the form of heat and light. This is the point at which a protostar becomes a main sequence star.

Some of the material left around the protostar could even become a planet one day. “Ultimately, this view of L1527 provides a window onto what our Sun and Solar System looked like in their infancy,” Webb scientists write.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
Blue Origin’s rocket booster returns to a hero’s welcome. Here’s why
The booster's success marks a giant leap for the spaceflight company.
The first stage of Blue Origin's New Glenn booster.

It’s been a week since Blue Origin landed the first-stage of its New Glenn rocket on a ship floating on the ocean, and with all of the back-slapping, endless celebrations, social media posts, and now a dramatic video (below), you’d be forgiven for thinking it was the first time it’d ever achieved such a feat. Oh wait, it was.

https://twitter.com/blueorigin/status/1991229667597029566

Read more
SpaceX preps next Starship flight as new booster rolls out for testing
It'll be the first flight for a redesigned Super Heavy booster.
The new Super Heavy booster Version 3 at Starbase ahead of the 12th Starship flight.

SpaceX is edging toward the 12th flight test of its mighty Starship rocket after the company rolled out the new Super Heavy booster for testing.

Appearing at SpaceX’s Starbase facility in southern Texas on Thursday, Booster 18 is the third version of the rocket’s main stage, with the 12th test set to see it fly for the very first time.

Read more
Blue Origin takes aim at SpaceX with rocket upgrade announcement
The spaceflight company is developing a larger, more powerful New Glenn rocket for more complex missions.
A render of Blue Origin's larger, more powerful New Glenn rocket.

Following last week’s success of Blue Origin’s first interplanetary launch and its first landing of the New Glenn rocket’s first-stage booster, the company has announced plans to transform the rocket into a more powerful beast. And yes, SpaceX will be paying attention.

The new version will be known as New Glenn 9x4, while the current one will now be called New Glenn 7x2, with the new names indicating the number of engines attached to the rocket’s first and second stages.

Read more