Skip to main content

James Webb Space Telescope to begin crucial deployment step on Tuesday

The James Webb Space Telescope blasted off atop an Ariane 5 rocket in a spectacular Christmas Day launch that marked the start of what promises to be a remarkable mission.

The most powerful space telescope ever built is currently heading toward its destination almost a million miles from Earth from where it’ll peer into deep space in a bid to unlock some of the secrets of the universe.

The $10 billion multiyear mission has been decades in the making and is the work of countless personnel at NASA, the European Space Agency, and the Canadian Space Agency.

To reach its destination orbit — a point known as L2 — the spacecraft has to perform a number of crucial burns over the next 29 days, while the telescope has to unfurl from its compact shape so that it can begin its exploration of space.

If any of these complex procedures go wrong, it could place the entire mission in jeopardy.

The good news is that so far everything has gone to plan. Confirmation of the latest success came on Monday night when Webb completed the second of three burns to keep it on course for L2.

It’s been a busy evening! Not only did we just complete our second burn, but #NASAWebb also passed the altitude of the Moon as it keeps cruising on to the second Lagrange point to #UnfoldTheUniverse. Bye, @NASAMoon! 👋 🌑 pic.twitter.com/IStul0fwFB

— NASA Webb Telescope (@NASAWebb) December 28, 2021

On Sunday, the gimbaled antenna assembly deployed without a hitch, enabling the transmission of huge amounts of data when the telescope starts its work. The solar array is firmly in place, too.

The James Webb Space Telescope has also passed the distance equivalent to that between Earth and the moon — 238,850 miles (384,400 km) — indicating that it’s already about a quarter of the way to its destination orbit.

What’s next?

Next up is the start of the delicate process of unfurling the massive sunshield, described as the size of a tennis court. The first of numerous steps toward this goal will take place on Tuesday, December 28, and involves the deployment of a section of the Unitized Pallet Structure, which supports and carries the sunshield’s five membranes.

The entire sunshield deployment is expected to take about five days, meaning it won’t be finished until the weekend. After that, it’s onto the deployment of the 18-segment golden mirror, the central component of the James Webb Space Telescope.

For anyone interested in seeing the telescope’s current location as it makes its way to L2 over the coming weeks, NASA has a special website for the mission offering all the information you need.

For more on the goals of the James Webb Space Telescope mission and some of the incredible discoveries that it could make, Digital Trends has you covered.

Editors' Recommendations

Trevor Mogg
Contributing Editor
Not so many moons ago, Trevor moved from one tea-loving island nation that drives on the left (Britain) to another (Japan)…
James Webb spots exoplanet with gritty clouds of sand floating in its atmosphere
This illustration conceptualises the swirling clouds identified by the James Webb Space Telescope in the atmosphere of the exoplanet VHS 1256 b. The planet is about 40 light-years away and orbits two stars that are locked in their own tight rotation. Its clouds, which are filled with silicate dust, are constantly rising, mixing, and moving during its 22-hour day.

One of the most exciting things about the James Webb Space Telescope is that not only can it detect exoplanets, but it can even peer into their atmospheres to see what they are composed of. Understanding exoplanet atmospheres will help us to find potentially habitable worlds, but it will also turn up some fascinating oddities -- like a recent finding of an exoplanet with an atmosphere full of gritty, sand clouds.

Exoplanet VHS 1256 b, around 40 light-years away, has a complex and dynamic atmosphere that shows considerable changes over a 22-hour day. Not only does the atmosphere show evidence of commonly observed chemicals like water, methane, and carbon monoxide, but it also appears to be dotted with clouds made up of silicate grains.

Read more
Astronomers share early images from James Webb’s galaxy survey
Images of four example galaxies selected from the first epoch of COSMOS-Web NIRCam observations, highlighting the range of structures that can be seen. In the upper left is a barred spiral galaxy; in the upper right is an example of a gravitational lens, where the mass of the central galaxy is causing the light from a distant galaxy to be stretched into arcs; on the lower left is nearby galaxy displaying shells of material, suggesting it merged with another galaxy in its past; on the lower right is a barred spiral galaxy with several clumps of active star formation.

One of the major aims of the James Webb Space Telescope is to observe some of the earliest galaxies in the universe, and to do that it needs to be able to see extremely distant objects. But looking at a particular very old galaxy in detail is only half of the problem. To truly understand the earliest stages of the universe, astronomers also need to see how these very old galaxies are distributed so they can understand the large-scale structure of the universe.

That's the aim of the COSMOS-Web program, which is using James Webb to survey a wide area of the sky and look for these rare, ancient galaxies. It aims to study up to 1 million galaxies during over 255 hours of observing time, using both Webb's near-infrared camera (NIRCam) and its mid-infrared instrument (MIRI) camera. While there is still plenty of observing left to do, the researchers in the COSMOS-Web program recently shared some of their first results.

Read more
How James Webb is peering into galaxies to see stars being born
Researchers are getting their first glimpses inside distant spiral galaxies to see how stars formed and how they change over time, thanks to the James Webb Space Telescope’s ability to pierce the veil of dust and gas clouds.

Recently astronomers used the James Webb Space Telescope to look at the structures of dust and gas which create stars in nearby galaxies. Now, some of the researchers have shared more about the findings and what they mean for our understanding of how galaxies form and evolve.

The project, called Physics at High Angular resolution in Nearby Galaxies, or PHANGS, used James Webb to observe several galaxies which are similar to our own Milky Way to see how stars are forming within them.

Read more