Skip to main content

James Webb Space Telescope to begin crucial deployment step on Tuesday

The James Webb Space Telescope blasted off atop an Ariane 5 rocket in a spectacular Christmas Day launch that marked the start of what promises to be a remarkable mission.

The most powerful space telescope ever built is currently heading toward its destination almost a million miles from Earth from where it’ll peer into deep space in a bid to unlock some of the secrets of the universe.

Recommended Videos

The $10 billion multiyear mission has been decades in the making and is the work of countless personnel at NASA, the European Space Agency, and the Canadian Space Agency.

Please enable Javascript to view this content

To reach its destination orbit — a point known as L2 — the spacecraft has to perform a number of crucial burns over the next 29 days, while the telescope has to unfurl from its compact shape so that it can begin its exploration of space.

If any of these complex procedures go wrong, it could place the entire mission in jeopardy.

The good news is that so far everything has gone to plan. Confirmation of the latest success came on Monday night when Webb completed the second of three burns to keep it on course for L2.

It’s been a busy evening! Not only did we just complete our second burn, but #NASAWebb also passed the altitude of the Moon as it keeps cruising on to the second Lagrange point to #UnfoldTheUniverse. Bye, @NASAMoon! 👋 🌑 pic.twitter.com/IStul0fwFB

— NASA Webb Telescope (@NASAWebb) December 28, 2021

On Sunday, the gimbaled antenna assembly deployed without a hitch, enabling the transmission of huge amounts of data when the telescope starts its work. The solar array is firmly in place, too.

The James Webb Space Telescope has also passed the distance equivalent to that between Earth and the moon — 238,850 miles (384,400 km) — indicating that it’s already about a quarter of the way to its destination orbit.

What’s next?

Next up is the start of the delicate process of unfurling the massive sunshield, described as the size of a tennis court. The first of numerous steps toward this goal will take place on Tuesday, December 28, and involves the deployment of a section of the Unitized Pallet Structure, which supports and carries the sunshield’s five membranes.

The entire sunshield deployment is expected to take about five days, meaning it won’t be finished until the weekend. After that, it’s onto the deployment of the 18-segment golden mirror, the central component of the James Webb Space Telescope.

For anyone interested in seeing the telescope’s current location as it makes its way to L2 over the coming weeks, NASA has a special website for the mission offering all the information you need.

For more on the goals of the James Webb Space Telescope mission and some of the incredible discoveries that it could make, Digital Trends has you covered.

Trevor Mogg
Contributing Editor
Not so many moons ago, Trevor moved from one tea-loving island nation that drives on the left (Britain) to another (Japan)…
‘That’s weird’: This galaxy could help astronomers understand the earliest stars
The newly-discovered GS-NDG-9422 galaxy appears as a faint blur in this James Webb Space Telescope NIRCam (Near-Infrared Camera) image. It could help astronomers better understand galaxy evolution in the early Universe.

Astronomers using the James Webb Space Telescope have spotted a weird galaxy that originated just a billion years after the Big Bang. Its strange properties are helping researchers to piece together how early galaxies formed, and to inch closer to one of astronomy's holy grail discoveries: the very earliest stars.

The researchers used Webb's instruments to look at the light coming from the GS-NDG-9422 galaxy across different wavelengths, called a spectrum, and made some puzzling findings.

Read more
James Webb image shows two galaxies in the process of colliding
This composite image of Arp 107, created with data from the James Webb Space Telescope’s NIRCam (Near-InfraRed Camera) and MIRI (Mid-InfraRed Instrument), reveals a wealth of information about the star formation taking place in these two galaxies and how they collided hundreds of million years ago. The near-infrared data, shown in white, show older stars, which shine brightly in both galaxies, as well as the tenuous gas bridge that runs between them. The vibrant background galaxies are also brightly illuminated at these wavelengths.

A new image from the James Webb Space Telescope shows one of the universe's most dramatic events: the colliding of two galaxies. The pair, known as Arp 107, are located located 465 million light-years away and have been pulled into strange shapes by the gravitational forces of the interaction, but this isn't a purely destructive process. The collision is also creating new stars as young stars are born in swirling clouds of dust and gas.

The image above is a composite, bringing together data from Webb's NIRCam (Near-InfraRed Camera) and MIRI (Mid-InfraRed Instrument). These two instruments operate in different parts of the infrared, so they can pick up on different processes. The data collected in the near-infrared range is seen in white, highlighting older stars and the band of gas running between the two galaxies. The mid-infrared data is shown in orange and red, highlighting busy regions of star formation, with bright young stars putting out large amounts of radiation.

Read more
James Webb trains its sights on the Extreme Outer Galaxy
The NASA/ESA/CSA James Webb Space Telescope has observed the very outskirts of our Milky Way galaxy. Known as the Extreme Outer Galaxy, this region is located more than 58 000 light-years from the Galactic centre.

A gorgeous new image from the James Webb Space Telescope shows a bustling region of star formation at the distant edge of the Milky Way. Called, dramatically enough, the Extreme Outer Galaxy, this region is located 58,000 light-years away from the center of the galaxy, which is more than twice the distance from the center than Earth is.

Scientists were able to use Webb's NIRCam (Near-Infrared Camera) and MIRI (Mid-Infrared Instrument) instruments to capture the region in sparkling detail, showing molecular clouds called Digel Clouds 1 and 2 containing clumps of hydrogen, which enables the formation of new stars.

Read more