Skip to main content

Crazy VR accessory simulates touch by turning users into living marionettes

The big challenge with making virtual reality feel real is that it’s still not particularly easy to convincingly replicate the sensation of being able to reach out and touch something. Anyone who has ever reached out and, say, touched a wall knows full well that it’s not the same feeling as a small handheld controller vibrating in your hand. Similarly, haptic VR gloves can accurately simulate something like grasping a soda can, but can’t adequately simulate touching a hard flat surface.

Researchers at Carnegie Mellon University’s ever-impressive Future Interfaces Group have come up with an intriguing alternative, however. While it’s still very much an elaborate prototype, their wearable device manages to compellingly allow users to feel the surface of objects — whether that’s the bumps in a sculpture, the flatness of a wall, the curves of a railing, or any other tactile surface. Albeit in a way that looks totally different to just about any VR accessory we’ve seen before!

“[Wireality works] by running thin strings down from the shoulder to each joint on your hand,” Chris Harrison, head of the Future Interfaces Group, told Digital Trends. “These strings are controlled by what are essentially little fishing reels which can be controlled by a computer. As you reach out into open space in VR, the strings are free to unwind. But if you collide your fingers with an object, it locks the corresponding strings for those joints. The strings can all be triggered at different times so that your hand can cup complex shapes, providing a high degree of touch realism.”

Wireality 1
Carnegie Mellon Future Interfaces Group

Next to the kinds of controllers found on high-end VR setups, Wireality might look pretty complex. But Harrison said that the focus was on making a compelling solution that was both simple and low-cost (it costs only around $50). Systems for providing realistic feedback for applications like telesurgery are great for what they’re being asked to do, but they’re designed for one purpose and are unlikely to ever be accessible to average VR users.

“We gave [ourselves] a budget of $50, and stipulated our design had to be light enough to wear and energy-efficient enough to run on batteries,” Harrison said. “Those combination of factors made it a fun design challenge, led by Cathy Fang, a senior at CMU in mechanical Engineering. A secondary challenge was building a mechanism that was fast and strong enough to survive the strength of the arms. Arms are surprisingly strong, especially when you are trying to build something out of plastic.”

The work was originally due to be presented at this week’s ACM Computer-Human Interaction (CHI) conference, although it was canceled due to COVID-19. A peer-reviewed paper describing the work is available to read online.

Editors' Recommendations

Luke Dormehl
I'm a UK-based tech writer covering Cool Tech at Digital Trends. I've also written for Fast Company, Wired, the Guardian…
How Intel and Microsoft are teaming up to take on Apple
An Intel Meteor Lake system-on-a-chip.

It seems like Apple might need to watch out, because Intel and Microsoft are coming for it after the latter two companies reportedly forged a close partnership during the development of Intel Lunar Lake chips. Lunar Lake refers to Intel's upcoming generation of mobile processors that are aimed specifically at the thin and light segment. While the specs are said to be fairly modest, some signs hint that Lunar Lake may have enough of an advantage to pose a threat to some of the best processors.

Today's round of Intel Lunar Lake leaks comes from Igor's Lab. The system-on-a-chip (SoC), pictured above, is Intel's low-power solution made for thin laptops that's said to be coming out later this year. Curiously, the chips weren't manufactured on Intel's own process, but on TSMC's N3B node. This is an interesting development because Intel typically sticks to its own fabs, and it even plans to sell its manufacturing services to rivals like AMD. This time, however, Intel opted for the N3B node for its compute tile.

Read more
How much does an AI supercomputer cost? Try $100 billion
A Microsoft datacenter.

It looks like OpenAI's ChatGPT and Sora, among other projects, are about to get a lot more juice. According to a new report shared by The Information, Microsoft and OpenAI are working on a new data center project, one part of which will be a massive AI supercomputer dubbed "Stargate." Microsoft is said to be footing the bill, and the cost is astronomical as the name of the supercomputer suggests -- the whole project might cost over $100 billion.

Spending over $100 billion on anything is mind-blowing, but when put into perspective, the price truly shows just how big a venture this might be: The Information claims that the new Microsoft and OpenAI joint project might cost a whopping 100 times more than some of the largest data centers currently in operation.

Read more
There’s an unexpected, new competitor in PC gaming
Snapdragon's X Elite PC SoC.

Windows gaming on ARM is becoming a legitimate possibility, and it's not just thanks to the recently unveiled emulation options, but it's chiefly due to the fact that Qualcomm's Snapdragon X Elite is shaping up to be pretty excellent. Spotted in a recent benchmark, the CPU was seen beating some of the best processors on the current market. Are we finally at a point where it's not always going to be a choice between just Intel and AMD?

The benchmarks were posted by user @techinmul on Twitter, and the results couldn't be more promising for the upcoming Qualcomm processor. The chip was tested in Geekbench 6, and although it's important not to take these results entirely at face value, it's an impressive show of performance that bodes well for upcoming thin and light laptops.

Read more