Skip to main content

Perseverance rover is driving itself around Mars using auto-navigation system

NASA's Perseverance Mars Rover's First Autonav Drive

As the Perseverance rover explores the Jezero crater on Mars, engineers at NASA are trying out a new capability that lets the rover navigate itself around the rocky terrain.

Currently, rover drivers like Vandi Verma at NASA’s Jet Propulsion Laboratory use 3D glasses to visualize and plan out driving routes. “Jezero is incredible,” Verma said. “It’s a rover driver’s paradise. When you put on the 3D glasses, you see so much more undulation in the terrain. Some days I just stare at the images.”

Vandi Verma, an engineer who now works with NASA’s Perseverance Mars rover, is seen here working as a driver for the Curiosity rover. The special 3D glasses she’s wearing are still used by rover drivers to easily detect changes in terrain that the rover may need to avoid.
Vandi Verma, an engineer who now works with NASA’s Perseverance Mars rover, is seen here working as a driver for the Curiosity rover. The special 3D glasses she’s wearing are still used by rover drivers to easily detect changes in terrain that the rover may need to avoid. NASA/JPL-Caltech

Now, though, the rover will start navigating by itself more often. The rover has an automated driving system called AutoNav which uses 3D maps of the terrain to plot out a safe route to drive while avoiding obstacles. This means it can plan and execute its own driving plan without the support staff back on Earth having to direct everything manually. Though the rover drivers still carefully oversee the process to make sure the routes are safe and that they are heading in the right direction to find geologically interesting samples.

“We have a capability called ‘thinking while driving,’” Verma said. “The rover is thinking about the autonomous drive while its wheels are turning.”

The big advantage of this capability is not in terms of maneuverability but in terms of speed. Manually planning out the exact safest driving route possible all the way from Earth takes a lot of time, which is one reason why rovers rarely move more than 200 meters in a day. With the new ability, Perseverance may be able to go as fast as 120 meters per hour.

“We sped up AutoNav by four or five times,” said Michael McHenry, the mobility domain lead and part of JPL’s team of rover planners. “We’re driving a lot farther in a lot less time than Curiosity demonstrated.”

For comparison, the Curiosity rover, which has roughly similar hardware to Perseverance but does not have the new AutoNav system, is currently traveling at around 20 meters per hour. The rover engineers are hopeful that this increased speed will help Perseverance in its search for evidence of ancient life.

“We’re going to be able to get to places the scientists want to go much more quickly,” said Jennifer Trosper, who has worked on every one of NASA’s Martian rovers and is the Mars 2020 Perseverance rover project manager. “Now we are able to drive through these more complex terrains instead of going around them: It’s not something we’ve been able to do before.”

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
The Curiosity rover reaches a milestone on Mars
Curiosity Rover

NASA's Curiosity rover, which is currently exploring Mars' Gale Crater, recently marked an impressive milestone: 4,000 days on Mars. The rover landed more than a decade ago on August 5, 2012, and since then it has continued to explore the area, collect rock samples, and make its way up the epic slopes of Mount Sharp.

The 4,000 days are measured in mission time, which is calculated in martian days or sols. Due to the differing rates of rotation of Earth and Mars, a day on Mars is slightly longer than a day on Earth, by about 40 minutes. And also, due to the difference distances between Earth and Mars and the sun, a martian year is longer too - at 668 sols, equivalent to 687 Earth days. Those working on Mars rover missions, especially the rover drivers, have to operate on Mars time, so their schedules are out of sync with typical Earth working hours and they generally work on 90-sol shifts to allow them time to readjust to Earth schedules.

Read more
Map of Mars shows the location of ice beneath the planet’s surface
In this artist’s concept, NASA astronauts drill into the Martian subsurface. The agency has created new maps that show where ice is most likely to be easily accessible to future astronauts.

One of the challenges of sending human explorers to Mars is that, due to the logistics of the journey, they will have to be on the planet's surface for considerably longer than the missions of a few days which have been sent to the moon in the past. That means future explorers will need access to resources like food, water, and oxygen -- and rather than having to carry months' worth of supplies through space, it's far more efficient to find ways to produce those resources on Mars itself.

That's the idea behind searching for water ice deposits on Mars. There's plenty of ice on the surface around the planet's poles, but most mission concepts are more focused on the planet's equatorial region. The good news is that there is ice present in these areas too, but the bad news is that it's primarily located below the surface and is thus hard to locate.

Read more
Perseverance rover catches footage of a dust devil on Mars
mars 2020 perseverance rover

Many of the weather events we experience here on Earth can be found on other planets too, and that includes whirlwinds. Several missions have observed small whirlwinds called dust devils on Mars, and the Perseverance rover recently captured footage of one such dust devil in action as it rolled across the martian surface.

The footage was captured by one of Perseverance's black-and-white navigation cameras, called Navcams, and shows a dust devil moving at a speed of around 12 mph across a regions known as the Thorofare Ridge. You can clearly see the dust devil as a white column moving across the top of the ridge in an animation posted by NASA's Jet Propulsion Laboratory, which manages the rover.

Read more