Skip to main content

Big data helps Belfort, France, allocate buses on routes according to demand

belfort france smart city urban transportation bus and bike sharing station
Image used with permission by copyright holder
As modern cities smarten up, the priority for many will be transportation. Belfort, a mid-sized French industrial city of 50,000, serves as proof of concept for improved urban transportation that does not require the time and expense of covering the city with sensors and cameras.

Working with Tata Consultancy Services (TCS) and GFI Informatique, the Board of Public Transportation of Belfort overhauled bus service management of the city’s 100-plus buses. The project entailed a combination of ID cards, GPS-equipped card readers on buses, and big data analysis. The collected data was used to measure bus speed from stop to stop, passenger flow to observe when and where people got on and off, and bus route density. From start to finish, the proof of concept project took four weeks.

Using the TCS Intelligent Urban Exchange system, operations managers were able to detect when and where about 20 percent of all bus passengers boarded and got off on each city bus route. Utilizing big data and artificial intelligence the city’s urban planners were able to use that data analysis to make cost-effective adjustments including the allocation of additional buses on routes and during times of greater passenger demand. They were also able to cut back on buses for minimally used routes and stops. In addition, the system provided feedback on the effect of city construction projects on bus service.

“We were eager to participate in this experiment to make Belfort more attractive to citizens and support the economy,” said Yannick Monnier, Director of the Board of Public Transportation of Belfort. “The results were very conclusive. The experiment allowed us to optimize our transportation network and realize savings. It was such a big success that it could be duplicated to improve not only transportation but also other major city services such as water, waste collection and electricity,” he added.

Going forward, continued data analysis will help the city budget wisely for infrastructure changes and new equipment purchases. The goal is to put the money where the needs are greatest rather than just spending and then waiting to see if usage justified the expense. The push for smarter cities has to be not just about improved services, but also smart resource allocation — in the Belfort project, the use of big data showed how to do both.

Bruce Brown
Digital Trends Contributing Editor Bruce Brown is a member of the Smart Homes and Commerce teams. Bruce uses smart devices…
The state of solid-state batteries: We may be on the cusp of an EV revolution
Factorial solid-state battery

Electric vehicles may have become a whole lot more popular over the past five years or so, but that’s despite some issues they still face regarding things like limited range and slow charging speeds. The result of these issues is that plenty of buyers are unsure about whether an EV might be for them. But there’s one technology that has been hailed as a savior for all of the EV issues related to batteries, and that’s solid-state battery tech.

This technology has been so hyped for so long that, at this point in time, it seems not only almost mythical, but as if we might never actually see it in the real world. So, what’s the state of solid-state batteries right now, and how far are we from finally seeing them and reaping their rewards? Here’s a look.
What are solid-state batteries?
What is a solid-state battery in the first place? Solid-state batteries keep the fundamentals of traditional battery design, offering an anode and a cathode with a porous separator in the middle, and a substance through which electrons flow from one side to the other. This, in turn, creates a circuit. But while a conventional battery is built with a liquid electrolyte solution on the inside, a solid-state battery instead makes the separator between the anode and the cathode the electrolyte itself.

Read more
Audi RS e-Tron GT Performance unveiled as a 912-hp electric sedan
2025 audi rs e tron gt performance specs pictures features

Audi's roster of past high-performance models includes the rally-winning Quattro and the V10-powered R8, but the new RS E-Tron GT Performance outguns them all. With up to 912 horsepower on tap, this electric sedan stands proud as the most powerful Audi ever built.

Starting with the RS E-Tron GT, which is related to the Porsche Taycan, engineers updated the front axle's electric motor and integrated a new, lighter electric motor into the rear axle to reach the 912-horsepower figure. Audi notes that this mammoth amount of power can only be unlocked temporarily when the launch control function is engaged, however. Other improvements helped the German company add horses to the E-Tron's cavalry, including a new chemistry for the 105-kilowatt-hour lithium-ion battery pack's cells and a revised cooling system.

Read more
Ram 1500 REV vs. Ford F-150 Lightning: Classic trucks go electric
Ford F-150 Lightning

The first Ram electric pickup truck is on the way. The Ram 1500 REV is set to be one of the most desirable electric trucks out there, thanks not only to the Ram name but also to its high-end specifications.

But, of course, it's certainly not the first electric truck out there. The Ford F-150 Lightning is a favorite among electric truck buyers, thanks to the fact that it continues that Ford F-150 legacy with a tried-and-true design coupled with new technologies.

Read more