Skip to main content

MIT researchers create ‘Cilllia’ — a sensor-filled 3D-printed hair

When you hear about breakthroughs in 3D printing, they often involve the construction of larger objects such as buildings, prosthetics, and other items of size. The Tangible Media Group at MIT’s Media Lab bucked the trend that bigger is better and used their l33t 3D printing skills to produce a 3D-printed micro-pillar object they call Cilllia.

The team’s first achievement was not the hair, cool though it is. The first breakthrough was the printing process itself. Standard CAD software is not set up to print hair-like strands of material, so the team had to start from the ground up by building a custom software program. “We built a software platform to let one quickly define a hair’s angle, thickness, density, and height,” said Jifei Ou. “With this method, we can 3D print super dense hair surface at micron density.”

With the software out of the way, the researchers began experimenting with their printing system, and used it to generate a variety of different hair-like items. The cilia can be printed in any hair shape at a range of thicknesses, with the smallest strands measuring an impressive 50 micrometers. The stands can be stiff like bristles or soft like fur and can print on either a flat or a curved surface.

Cilllia - 3D Printed Hair Structures for Surface Texture, Actuation and Sensing

Being able to print a coat of fur for your 3D-printed pet is useful, but the MIT team has bigger plans for the technology. The researchers are developing ways of adding mechanical adhesions, actuators, and even sensors to the final product. These add-ons allow the researcher to create a surface that can respond to and interact with the environment around it. In one application, the researchers 3D printed a windmill that spins when it detects a vibration. In another application, they printed a micro-pillar mat of cilia that could detect the touch of a finger and respond to different swiping patterns.
Kelly Hodgkins
Kelly's been writing online for ten years, working at Gizmodo, TUAW, and BGR among others. Living near the White Mountains of…
AMD’s revolutionary 3D V-Cache chip could launch very soon
AMD Ryzen 5000G.

The launch of AMD's upcoming Ryzen 7 5800X3D processors is close, but a new leak tells us that it might be just a couple of weeks away.

According to a well-known source of hardware leaks, the processors have already started shipping. This indicates that they might hit the market by the end of this month. AMD estimates that its new processor could match up against the top chip from the Intel Alder Lake lineup.

Read more
AMD teases performance of its revolutionary 3D V-cache chip
AMD CEO holding 3D V-Cache CPU.

AMD is currently readying its new Ryzen 7 5800X3D, featuring a 3D V-cache, and it looks like we may soon have a powerful processor on our hands. AMD has teased that we can expect an up to 15% performance boost over the base Ryzen 7 5800X.

The tech giant talked about the new chip during the International Solid-State Circuits Conference (ISSSC) and revealed more information about its architecture. While the Ryzen 7 5800X3D will certainly be an improvement, will it be enough to compete with Intel's best processors?

Read more
Fighting football injuries with 3D-printed, hyper-personalized pads
The Protect3d 3D scanning process.

If you’ve ever watched a movie about sports, you’ve seen it. It's that moment that occurs two-thirds of the way into the story, when the protagonists’ inevitable victory suddenly seems a lot less certain. Maybe the inspirational mentor winds up in the ER, muttering motivational slogans from a hospital bed. Perhaps the unorthodox coach wins over the team, only to be fired by management for thinking too far outside the box. Possibly the star lacrosse player has a crisis of faith and realizes he wants to be an acapella singer rather than a jock.

For the three co-founders of Protect3D, a real-life version of that moment took place between the second and fifth game of Duke University's football season several years ago, back when the company's founders were engineering students. The team’s starting quarterback was the recipient of a particularly tough sack during a game. He went down hard, and stayed down. Things looked bleak.

Read more