Skip to main content

Astronomers detect atmosphere of a distant, diamond-like super-Earth for first time

astronomers detect atmosphere of super earth 55 cancri 1
55 Cancri e in front of its parent star, Copernicus ESA/Hubble, M. Kornmesser
Astronomers at London’s University College London made cosmic history this week, announcing the discovery of hydrogen and helium gas within the atmosphere of a distant super-Earth known as 55 Cancri e. According to findings published in the Astrophysical Journal, 55 Cancri e boasts a mass over eight times that of Earth, and sees its temperatures rise to roughly 3,632 degrees Fahrenheit. Despite the planet’s obvious uninhabitable nature for humans, the astronomers say the evidence of an atmosphere on such a planet is a boon for the continued search for livable planets outside our own solar system.

Located in a solar system roughly 40 light-years from Earth, 55 Cancri e is one of several planets orbiting 55 Cancri, a sun-like star called “Copernicus.” Dubbed “Janssen” by the International Astronomical Union, 55 Cancri e was initially discovered in 2004 and represents one of the first super-Earth type planets found by astronomers. Years before the Kepler space telescope made finding exoplanets an absolute breeze, astronomers instead used the traditional radial velocity technique to discover distant planetary systems, including the one containing Copernicus and Janssen.

Related Videos

What made 55 Cancri e so special upon its discovery was that it was also one of the first rocky planets to orbit a sequence star similar to our sun. Though in comparison to its mass Earth is little more than a pipsqueak, compared to other giant gaseous planets within our solar system, Janssen (along with all super-Earths) is relatively small.

“This is a very exciting result because it’s the first time that we have been able to find the spectral fingerprints that show the gases present in the atmosphere of a super-Earth,” says UCL PhD student Angelos Tsiaras. “Our observations of 55 Cancri e’s atmosphere suggest that the planet has managed to cling on to a significant amount of hydrogen and helium from the nebula from which it formed.”

Tsiaras, along with UCL Physics & Astronomy’s Dr. Ingo Waldmann and Marco Rocchetto, developed a new data processing technique for NASA and the European Space Agency’s Hubble Space Telescope which allowed them to examine Janssen’s atmosphere with “unprecedented detail.” By utilizing this novel technique, astronomers gained the ability to essentially tease data concerning a planet’s atmosphere out of readings obtained by Hubble. Moreover, the inherent brightness of Copernicus further aided in the astronomers’ ability to obtain information pertaining to Janssen.

The accrued data then allowed the researchers to deduce what exactly Janssen’s atmosphere contained (its helium and hydrogen makeup), and also fostered the creation of the theory that its high-density core could be diamond-like. Considering the star formed some 8 billion years ago (and orbits so close to a star), the astronomers are shocked it has maintained an atmosphere for as long as it has. Additionally, the recorded data also indicated a hydrogen cyanide signature, likely meaning 55 Cancri e’s atmosphere is carbon-rich.

“If the presence of hydrogen cyanide and other molecules is confirmed in a few years time by the next generation of infrared telescopes, it would support the theory that this planet is indeed carbon rich and a very exotic place,” says UCL professor Jonathan Tennyson. “Although, hydrogen cyanide or prussic acid is highly poisonous, so it is perhaps not a planet I would like to live on!”

So while 55 Cancri e isn’t necessarily paradise waiting in the wings, the discovery of its atmosphere stands as an incredible advance toward discovering Earth-like planets in the future. Currently, astronomers lack the necessary telescope to discover such planets, however, with the launch of the James Webb Space Telescope scheduled for 2018, such a capability isn’t terribly far off.

Editors' Recommendations

The next big thing in science is already in your pocket
A researcher looks at a protein diagram on his monitor

Supercomputers are an essential part of modern science. By crunching numbers and performing calculations that would take eons for us humans to complete by ourselves, they help us do things that would otherwise be impossible, like predicting hurricane flight paths, simulating nuclear disasters, or modeling how experimental drugs might effect human cells. But that computing power comes at a price -- literally. Supercomputer-dependent research is notoriously expensive. It's not uncommon for research institutions to pay upward of $1,000 for a single hour of supercomputer use, and sometimes more, depending on the hardware that's required.

But lately, rather than relying on big, expensive supercomputers, more and more scientists are turning to a different method for their number-crunching needs: distributed supercomputing. You've probably heard of this before. Instead of relying on a single, centralized computer to perform a given task, this crowdsourced style of computing draws computational power from a distributed network of volunteers, typically by running special software on home PCs or smartphones. Individually, these volunteer computers aren't particularly powerful, but if you string enough of them together, their collective power can easily eclipse that of any centralized supercomputer -- and often for a fraction of the cost.

Read more
Why AI will never rule the world
image depicting AI, with neurons branching out from humanoid head

Call it the Skynet hypothesis, Artificial General Intelligence, or the advent of the Singularity -- for years, AI experts and non-experts alike have fretted (and, for a small group, celebrated) the idea that artificial intelligence may one day become smarter than humans.

According to the theory, advances in AI -- specifically of the machine learning type that's able to take on new information and rewrite its code accordingly -- will eventually catch up with the wetware of the biological brain. In this interpretation of events, every AI advance from Jeopardy-winning IBM machines to the massive AI language model GPT-3 is taking humanity one step closer to an existential threat. We're literally building our soon-to-be-sentient successors.

Read more
The best hurricane trackers for Android and iOS in 2022
Truck caught in gale force winds.

Hurricane season strikes fear into the hearts of those who live in its direct path, as well as distanced loved ones who worry for their safety. If you've ever sat up all night in a state of panic for a family member caught home alone in the middle of a destructive storm, dependent only on intermittent live TV reports for updates, a hurricane tracker app is a must-have tool. There are plenty of hurricane trackers that can help you prepare for these perilous events, monitor their progress while underway, and assist in recovery. We've gathered the best apps for following storms, predicting storm paths, and delivering on-the-ground advice for shelter and emergency services. Most are free to download and are ad-supported. Premium versions remove ads and add additional features.

You may lose power during a storm, so consider purchasing a portable power source,  just in case. We have a few handy suggestions for some of the best portable generators and power stations available. 

Read more