Skip to main content

Bioengineers share their biobot blueprints with the world

build biobot
Image used with permission by copyright holder
Bioengineers Ritu Raman and Rashid Bashir know biobots. They’ve been building them for years as part of their work within Bashir’s research group at the University of Illinois at Urbana-Champaign. Five years ago, they developed bio-bots that could move thanks to a power supply provided by rat heart cells. Now, the team wants to help other bioengineers build biobots of their own. They’ve shared their blueprint in a paper published in the journal Nature Protocols.

“Biobots are robots that use biological tissues to perform certain functional tasks,” Raman, the paper’s lead author, told Digital Trends. “Our biobots use skeletal muscle to walk, but our paper discusses extending our methodology to other tissue types and other functional behaviors. The muscle we use is genetically engineered to contract in response to blue light, so we can get our biobots to walk in the direction of a flashing light stimulus.”

Recommended Videos

In the paper, which was featured on the cover of the journal, the researchers also describe recipes and protocols for developing biobots in order to inform other bioengineers.

Please enable Javascript to view this content

“We believe that the next generation of engineers and scientists will benefit greatly from learning how to ‘build with biology,’ and that biological materials will be an invaluable addition to the inventors’ toolbox,” Raman said. She and her team have developed a class for undergraduates at the University of Illinois and University of California, Merced, and now want to broaden this network to include researchers from other institutions.

Through their research, Raman and Bashir hope to demonstrate how living cells can contribute to the development of complex systems. “In the near future, we hope that this research can be applied towards applications in healthcare such as high-throughput drug testing, dynamic functional implants, and targeted drug delivery,” Raman said. “Once we have developed methodologies for engineering robust multi-cellular multi-functional biobots, we hope that biobots can be targeted at any real-world application that is currently addressed with robots made from man-made materials.

“I hope that other researchers can use this paper as a foundational resource on how to design, manufacture, and optimize a bio-integrated machine,” she added, “and that it inspires them to use biobots to address technical challenges we face as a society.”

Dyllan Furness
Former Digital Trends Contributor
Dyllan Furness is a freelance writer from Florida. He covers strange science and emerging tech for Digital Trends, focusing…
Mercedes bets solar paint is part of EV-charging future
mercedes solar paint evs benz electric camper

It’s been said that Albert Einstein’s genius came from his ability to freely wonder and ask child-like questions way before he even tried applying science-based solutions.
It seems some within the R&D department at Mercedes-Benz might be similarly inspired. The German automaker is currently developing a special solar paint that, when applied on the surface of vehicles, can harness enough energy from the sun to power up EVs.
The energy generated by the paint’s solar cells can be used for driving or fed directly into a high-voltage battery.
“The photovoltaic system is permanently active and also generates energy when the vehicle is switched off,” Mercedes says. “In the future, this could be a highly effective solution for increased electric range and fewer charging stops.”
The layer of paste to be applied on EVs is significantly thinner than a human hair, yet its photovoltaic cells are packed full of energy. Covering the surface of a mid-size SUV with the paint could produce enough energy for up to 7,456 miles per year under ideal conditions, Mercedes says.
This does imply being in geographic locations with plenty of sun hours during the day.
But even with less-than-ideal sun hours, the energy yielded can make a significant difference to EV charging. Mercedes says the solar-paint charge could provide 100% of needed energy for an average daily drive of 32 miles in sun-drenched Los Angeles. In much less sunny conditions -- such as around Mercedes’ headquarters in Stuttgart, Germany -- it would still yield enough energy for 62% of the distance.
An added bonus for environmentally-conscious drivers: Unlike some solar panels, the solar paint contains no rare earth or silicon – only non-toxic, readily available raw materials. It’s also easy to recycle and considerably cheaper to produce than conventional solar modules, Mercedes says.
The likes of Aptera, Sono Motors, Lightyear, and Hyundai have also been researching how to best harness solar energy to power up EVs.
But that’s been mostly through solar panels yielding enough energy for small and light vehicles, such as Aptera’s three-wheel solar EV. Solar paint could bring solar charging for bigger vehicles, such as electric SUVs, Mercedes says.

Read more
Volkswagen’s affordable ID.2 EV remains on track
vw id2 volkswagen affordable ev 1

It’s no secret that Volkswagen has been facing a huge slump in sales in Europe and China, forcing it to close plants in Germany.

But unlike other European automakers who have stuck to producing high-end electric vehicles (EVs), the German automaker keeps on reaffirming its commitment to bringing affordable EVs to market, including in the U.S.

Read more
Is a Jeep Cherokee replacement slated for 2025?
Jeep Cherokee

Jeep is remaining somewhat mysterious about the name of a new hybrid SUV slated to be part of the brand’s lineup in 2025.
Speaking at the Los Angeles Auto Show recently, Jeep CEO Antonio Filosa would only say that a new compact SUV with a hybrid powertrain was indeed on the way, according to Automotive News.
Filosa had already confirmed last spring that a new “mainstream” large SUV would soon be launched by Jeep, adding that we "could probably guess what it will be called." His comments had sparked speculation that the Cherokee brand name would be back.
While the brand name has existed since 1974, the Cherokee Nation in the U.S. had officially asked Jeep to stop using its name in 2021.
Early last year, Jeep quietly discontinued the model, which was one of its most iconic SUVs of the past 50 years.
The reason? Besides slumping sales, Jeep at the time cited the confluence of market dynamics, consumer preferences, and strategic brand realignment.
The Cherokee was viewed as a classic four-door SUV, known both for its reliability and its ability to suit both off-road and urban environments.
But with time, “consumer preferences have significantly shifted towards larger SUVs equipped with the latest technology and enhanced safety features,” Jeep said at the time. “This trend is accompanied by an increasing demand for environmentally friendly vehicles, steering the market towards hybrid and electric models.”
While no one knows for sure what the new SUV hybrid will be called, Jeep's parent company, Stellantis, is certainly doing everything it can to steer all its brands in the hybrid and electric direction.

Stellantis recently launched a new platform called STLA Frame that’s made for full-size trucks and SUVs. The platform is designed to deliver a driving range of up to 690 miles for extended-range electric vehicles (EREVs) and 500 miles for battery electric vehicles (BEVs).

Read more