Skip to main content

New cotton candy-inspired technique is helping scientists build artificial capillaries

A VU INSIDE: Cotton Candy and Artificial Blood Vessels
Cotton candy may be a distant carnival memory for most of us, but for one bioengineer, the sweet treat might hold the key to the future of artificial organ creation. Leon Bellan is an assistant professor of mechanical engineering, and his Vanderbilt University team has succeeded in using a technique inspired by cotton candy machines to spin three-dimensional artificial capillary systems. These blood vessels are the power behind all kinds of cells, and artificial versions are being used to grow organs for transplant.

Electrospinning is the process that strengthens nanofibers using electricity, but because the resulting fibers are so thin and delicate, they have been likened to silly string, Cheese Whiz, or cotton candy. Bellan decided to take a literal approach to the cotton candy analogies being used to describe electrospun fibers at academic conferences. “I went to Target and bought a cotton candy machine for about $40. It turned out that it formed threads that were about one tenth the diameter of a human hair – roughly the same size as capillaries,” said Bellan.

cotton candy blue

The adapted cotton candy machine method spins out systems of thin-walled capillaries that are able to service cells throughout the human body. Artificial capillary networks can get complicated when they are three-dimensional, but the electrospinning method that Bellan used has solved many of the existing problems with these types of fibers.

First, the cotton candy method spins blood vessels measuring between 3 and 55 microns, and completes them faster than other methods. Speed is important here because the capillary systems need to be viable and healthy across the board in order to effectively deliver nutrients to cells and carry away waste. Slower methods can’t maintain healthy capillaries for prolonged periods of time as the systems grow and develop.

Another key feature of the new cotton candy method is an innovative material called PNIPAM, or Poly(Nisopropylacrylamide). Because the polymer is insoluble above 32 degrees Celsius and soluble when below that temperature, it allows for the specific kind of growth scientists need in order to create artificial capillaries. “First, the material has to be insoluble in water when you make the mold so it doesn’t dissolve when you pour the gel. Then it must dissolve in water to create the microchannels because cells will only grow in aqueous environments,” Bellan explained.

PNIPAM has been used in other medical products safely, and could be the key to supporting cell growth enough to lead to fully formed organs for transplant. Solving some of the key issues delaying artificial organ development gets Bellan and his cotton candy electrospinning method even closer to real-world usage. The team’s next steps will be to perfect the capillary systems with different types of human tissue in order to artificially grow complete organs safely and effectively — everything from from livers to kidneys, and even solid bone.

Editors' Recommendations

Chloe Olewitz
Chloe is a writer from New York with a passion for technology, travel, and playing devil's advocate. You can find out more…
New blood drawing technique could mean less needle pokes at the hospital
blood draw

Afraid of needles? Soon you may have one less thing to fear. Two companies, Intermountain Healthcare and Velano Vascular, are exploring new tech that could keep people from feeling like pin-cushions at the hospital.

According to Utah news outlet KSL, Velano Vascular has developed a way to use IV catheters for drawing blood -- without sticking another hole in the patient. The device is single-use and disposable, and designed to take advantage of the catheter already in use for infusion.

Read more
The Large Hadron Collider just helped scientists discover an exotic new particle
cern large hadron collider physicists discover pentaquark paritcle lhc

You know the Large Hadron Collider? That giant particle accelerator that physicists use to crash atoms together at high velocities and observe what happens? Well, just a few short months after CERN fired it up again, it's already helped scientists uncover a completely new class of particle -- the pentaquark.

First theorized in the 1960s, pentaquarks are basically a specific type of subatomic particle that are comprised of five quarks -- the smallest subatomic particles that scientists have ever been able to observe. In different combinations, quarks come together to form larger particles -- much like different combinations of protons, neutrons, and electrons produce different elements on the periodic table.

Read more
Why AI will never rule the world
image depicting AI, with neurons branching out from humanoid head

Call it the Skynet hypothesis, Artificial General Intelligence, or the advent of the Singularity -- for years, AI experts and non-experts alike have fretted (and, for a small group, celebrated) the idea that artificial intelligence may one day become smarter than humans.

According to the theory, advances in AI -- specifically of the machine learning type that's able to take on new information and rewrite its code accordingly -- will eventually catch up with the wetware of the biological brain. In this interpretation of events, every AI advance from Jeopardy-winning IBM machines to the massive AI language model GPT-3 is taking humanity one step closer to an existential threat. We're literally building our soon-to-be-sentient successors.

Read more