Skip to main content

Scientists may soon be able to treat autism with CRISPR gene editing

CRISPR-Cas9 gene editing is capable of some pretty impressive feats, from creating more efficient crops to malaria-resistant mosquitoes. Now researchers at the University of California, Berkeley and other institutes have discovered another potentially life-altering application: Editing out the genetic traits commonly associated with autism. While it’s so far been demonstrated on mice only, it raises the possibility of revolutionizing autism treatment for millions of people around the world.

“This study shows the first time demonstration of the rescue autistic symptoms using gene editing in autism mouse model,” Hye Young Lee, an assistant professor of cellular and integrative physiology at the University of Texas Health Science Center at San Antonio, told Digital Trends. “On the top of that, we used nonviral way to deliver to do it, which supports the potential therapeutic treatment for brain disorders.”

Recommended Videos

The work involved injecting the CRISPR complex into a specific brain region in mice, via special nanoparticles. This so-called “striatum” brain region is known to mediate the forming of habits, including the repetitive behaviors often seen with autism spectrum disorder (ASD.) The Cas9 disabled a specific receptor gene, which resulted in the dampening of exaggerated signaling between cells, thereby reducing repetitive behavior. In the case of mice, this meant a 30 percent decrease in compulsive digging and 70 percent drop in jumping, both of these behaviors associated with autistic behavior.

Please enable Javascript to view this content

As another important development in the study, researchers discovered a way to ship the CRISPR particles long distances (in this case from Berkeley to San Antonio, Texas), as well as manufacturing them in a reproducible manner. This eliminates a key bottleneck affecting many projects involving nanotechnologies.

Could a similar treatment to this one day be used in humans? “Not right away, but it can be used for human treatment once we make sure it is safe to use, and once it is tested in bigger animals than mice,” Lee said. In the future, the researchers think it might also be possible to inject these particles into the central nervous system by way of the spinal cord, rather than having to inject them directly into the brain.

A paper describing the work was recently published in the journal Nature Biomedical Engineering.

Luke Dormehl
Former Digital Trends Contributor
I'm a UK-based tech writer covering Cool Tech at Digital Trends. I've also written for Fast Company, Wired, the Guardian…
Hyundai’s brand new Ioniq 9 EV features backseat lounge
hyundai ioniq 9 lounge 4 single image desktop

After months of teasing details about the Ioniq 9, Hyundai’s much-anticipated, three-row electric SUV, the company finally unveiled it at the Los Angeles Auto Show.

One of the Ioniq 9’s promised features -- that the SUV had the ability to offer a lounge-like interior – had most of us wondering what exactly that might mean.

Read more
Kia America COO says ending EV tax credit would be dumb
kia coo ending ev incentive dumb zeta evs

With Kia just getting started with the expansion of its U.S.-made electric-vehicle (EV) lineup, the automaker may have a good perspective on what losing tax incentives on EVs could mean for the industry and the economy.

The transition team of the incoming Trump administration is reportedly planning to end the federal $7,500 tax credit on the purchase or lease of an EV. Under the Biden administration’s Inflation Reduction Act (IRA), an EV made in North America is eligible for the incentive.

Read more
Mercedes bets solar paint is part of EV-charging future
mercedes solar paint evs benz electric camper

It’s been said that Albert Einstein’s genius came from his ability to freely wonder and ask child-like questions way before he even tried applying science-based solutions.
It seems some within the R&D department at Mercedes-Benz might be similarly inspired. The German automaker is currently developing a special solar paint that, when applied on the surface of vehicles, can harness enough energy from the sun to power up EVs.
The energy generated by the paint’s solar cells can be used for driving or fed directly into a high-voltage battery.
“The photovoltaic system is permanently active and also generates energy when the vehicle is switched off,” Mercedes says. “In the future, this could be a highly effective solution for increased electric range and fewer charging stops.”
The layer of paste to be applied on EVs is significantly thinner than a human hair, yet its photovoltaic cells are packed full of energy. Covering the surface of a mid-size SUV with the paint could produce enough energy for up to 7,456 miles per year under ideal conditions, Mercedes says.
This does imply being in geographic locations with plenty of sun hours during the day.
But even with less-than-ideal sun hours, the energy yielded can make a significant difference to EV charging. Mercedes says the solar-paint charge could provide 100% of needed energy for an average daily drive of 32 miles in sun-drenched Los Angeles. In much less sunny conditions -- such as around Mercedes’ headquarters in Stuttgart, Germany -- it would still yield enough energy for 62% of the distance.
An added bonus for environmentally-conscious drivers: Unlike some solar panels, the solar paint contains no rare earth or silicon – only non-toxic, readily available raw materials. It’s also easy to recycle and considerably cheaper to produce than conventional solar modules, Mercedes says.
The likes of Aptera, Sono Motors, Lightyear, and Hyundai have also been researching how to best harness solar energy to power up EVs.
But that’s been mostly through solar panels yielding enough energy for small and light vehicles, such as Aptera’s three-wheel solar EV. Solar paint could bring solar charging for bigger vehicles, such as electric SUVs, Mercedes says.

Read more