Skip to main content

Stimulating brains with lasers can create ‘Matrix’-like false experiences

Image used with permission by copyright holder

Remember the iconic scene from the first Star Wars movie in which R2-D2 projects a Princess Leia hologram, beseeching Obi-Wan Kenobi to help her? Similar technology in the real world might one day do a lot more than offering sci-fi warnings; it could potentially transform lives, too. And all thanks to a little bit of brain manipulation.

At the University of California at Berkeley, researchers have been busy exploring ways to project a holographic image directly into the brain. As they have discovered, this can be used to both read neural activity and also to stimulate it.

Recommended Videos

The results could mean one day being able to activate or suppress thousands of neurons at once; copying patterns of real brain activity to trick the brain into thinking that it’s felt, seen or sensed something. So Star Wars with a touch of The Matrix or Inception, then!

Image used with permission by copyright holder

“We have developed a system using laser light that can both ‘read’ brain activity and ‘write’ brain activity,” Hillel Adesnik, an assistant professor of molecular and cell biology, told Digital Trends. “The system uses principles of holography: a method to generate three-dimensional patterns of light that many might be familiar with in holographic displays. The goal of this technology is to measure brain activity in both health and disease so that we can correct aberrant patterns of activity in real time, and treat a wide array of neurological disorders.”

“The goal of this technology is to measure brain activity in both health and disease.”

The holographic projection technology works using an LCD screen which functions as a holographic negative to shape laser light into custom-designed patterns. These 40W laser beams are then pulsed incredibly rapidly in 300 femtosecond-long bursts every microsecond. The goal is to pulse these quickly enough to simulate the normal firing rates seen in the brain’s cortex.

So far, the technique has been successfully demonstrated in mice. It was achieved by engineering neurons in the mouse’s brain so that they express proteins which create a brief spike of activity when they are hit with light. At present, it has only been carried out on a tiny piece of brain, measuring a half-millimeter square, but the researchers think they could scale this up. And when they do, the results may be extraordinary.

Activating brain cells with holography

“In the future, when gene therapy has been shown to be safe in humans, this system could track brain activity of patients with neurological disorders, including epilepsy and schizophrenia, rapidly identify when brain activity is going wrong, and then stimulate patterns of activity in the brain to correct this activity and block the symptoms of these diseases,” Adesnik continued.

“Patients who have lost function of their retinas or other sense organs could use this system to regain vision.”

“More generally, this technology could also be used for neural prosthetics. Patients who have lost function of their retinas or other sense organs could use this system to regain vision. In principal, it might be possible to take the imaging data from a head mounted camera and write this activity — after the appropriate transformation — as neural activity directly into the brain to provide someone who is blind with artificial vision.”

Hillel Adesnik, Assistant Professor of Molecular and Cell Biology University of California at Berkeley

In the same vein, Adesnik said that it might be possible for researchers to use this development to enable new ways of controlling smart prostheses, such as robotic arms.

While this research is still at a relatively early stage, it could potentially solve two of the biggest challenges which exist in the field of brain-machine interfaces. These are the low spatial resolution of existing systems approved for human use, and the fact that such systems don’t typically write back in sensory feedback. This is crucial if researchers want to build tools that will accurately let us use our hands are arms to pick up objects.

Next up for the project? A neural prosthesis for mice, apparently.

“We plan to use this system to see if we can cure models of cognitive disease, such as schizophrenia,” Adesnik continued. “But as basic neuroscientists, we are also primarily interested in using this system to ‘crack’ the neural codes of sensory perception.”

:We want to understand how our brain builds perceptions of our external world all through the language of neurons, which is basically a digital code of zeros and ones in hundreds of millions of brain cells. We believe this new technology can address this fundamental question in neuroscience because we can attempt to generate artificial perceptions by writing specific patterns of activity into the brain and see what ‘works.’”

A paper describing the work was recently published in the journal Nature Neuroscience.

Luke Dormehl
I'm a UK-based tech writer covering Cool Tech at Digital Trends. I've also written for Fast Company, Wired, the Guardian…
Sebastian Stan lays out Bucky’s future after Thunderbolts
Sebastian Stan in Thunderbolts.

There are some spoilers ahead for the ending of Marvel's Thunderbolts. Stop reading now if you don't want to be spoiled.

Earlier this year, Captain America: Brave New World briefly introduced a new direction for James "Bucky" Barnes, a character Sebastian Stan has been playing since 2011 in Captain America: The First Avenger. In Brave New World, the former Winter Soldier apparently retired from being a reformed hero and went into politics by running for Congress. Thunderbolts reveals that Bucky won his election to the House of Representatives. But his stay in Congress was short.

Read more
Jeep Compass EV breaks cover—but will it come to the U.S.?
jeep compass ev us newjeepcompassfirsteditionhawaii  4

Jeep just pulled the wraps off the all-new Compass EV, and while it’s an exciting leap into the electric future, there's a catch—it might not make it to the U.S. anytime soon.
This is a brand new electric version of the Jeep Compass, and being built on Stellantis' STLA platform—the same architecture underpinning models like the Peugeot E-3008 and E-5008—it looks much slicker and packs a lot more inside than previous versions of the Compass.
Let’s start with what’s cool: the new Compass EV is packing up to 404 miles of range on a single charge, a 74 kWh battery, and fast-charging that gets you from 20% to 80% in about 30 minutes. Not bad for a compact SUV with Jeep's badge on the nose.
There are two versions: a front-wheel-drive model with 213 horsepower and a beefier all-wheel-drive version with 375 horsepower. That AWD setup isn’t just for looks—it can handle 20% inclines even without front traction, and comes with extra ground clearance and better off-road angles. In short, it’s still a Jeep.
The design's been refreshed too, and inside you’ll find the kind of tech and comfort you’d expect in a modern EV—sleek, smart, and ready for both city streets and dirt trails.
But here’s the thing: even though production starts soon in Italy, Jeep hasn’t said whether the Compass EV is coming to America. And the signs aren’t promising.
Plans to build it in Canada were recently put on hold, with production now delayed until at least early 2026. Some of that might have to do with possible U.S. tariffs on Canadian and Mexican vehicles—adding a layer of uncertainty to the whole rollout.
According to Kelley Blue Book, a Stellantis spokesperson confirmed that the company has “temporarily paused work on the next-generation Jeep Compass, including activities at” the Canadian plant that was originally meant to build the model. They added that Stellantis is “reassessing its product strategy in North America” to better match customer needs and demand for different powertrain options.
So while Europe and other markets are gearing up to get the Compass EV soon, American drivers might be left waiting—or miss out entirely.
That’s a shame, because on paper, this electric Jeep hits a lot of sweet spots. Let’s just hope it finds a way over here.

Read more
Charlie Cox singles out his least favorite Daredevil: Born Again episode
Charlie Cox in Daredevil: Born Again.

Daredevil: Born Again season 1 was largely reconceived after the 2023 actor and writer strikes. Dario Scardapane -- a veteran of The Punisher series on Netflix -- was brought in to be the new showrunner and he made a lot of changes to the series that were well-received. However, there's one episode that Scardapane didn't really change at all, and it happens to be the least favorite episode of Daredevil: Born Again's leading man, Charlie Cox.

During an appearance on The Playlist, Cox noted that he wasn't very fond of the season's fifth episode, "With Interest," which was a largely standalone episode that featured his character, Matt Murdock, in a bank during a hostage crisis.

Read more