Skip to main content

How power became portable: An introduction to battery technology

The modern world, in all its grandeur and complexity, runs off a shockingly primal force, one that has been flowing through human bodies long before the first motor was built. Electricity, that same force that has kept human hearts beating for as long as there have been human hearts to beat, today flows through the veins of civilization, powering the skyscrapers we work in and the phones in our pockets.

Although the great producers of electricity, colossi like the Hoover Dam, may be the most viscerally impressive, human mastery of electrical currents is perhaps most impressive in the form of batteries. Some small enough to sit on the tip of a finger, batteries power many of the devices we use every day: phones, laptops, flashlights, watches. They have been an omnipresent part of life for decades now, but how many of us know how they work?

Recommended Videos

Beneath their simple exteriors, a simple mechanism

A typical alkaline battery will be familiar to many people, at least from the outside. Generally encased in a metal cylinder, the battery has two ends marked as + (positive) and – (negative). The two ends of a battery are terminals, connected to electrodes within the battery: the positive end connects to a cathode, while the negative end connects to an anode. A separator inside the battery keeps the two from touching, while allowing electricity to flow between them. Between the two ends is an electrolyte paste, a substance that allows for the flow of electrical current.

anatomy of battery
Image used with permission by copyright holder

Electrons naturally want to flow from the negative end (where there are excess electrons) to the positive end (where there are open spaces for electrons), however they cannot do so because the separator blocks their path. By connecting the positive and negative ends of the party, a circuit is formed that allows electrical current to flow.

circuit diagram
Image used with permission by copyright holder

When a battery is plugged into a device, such as a flashlight or remote, a circuit is established and chemical reactions occur in the anode and cathode. In the anode, an oxidation reaction occurs, where ions combine with the anode and release electrons. In the cathode, a reduction reaction occurs, with ions and electrons forming compounds. In these oxidation-reduction reactions, electrons are flowing from the negatively charged anode to the positively charged cathode.

In an alkaline battery, the anode is made of zinc, while the cathode is manganese dioxide. The electrodes in these batteries erode over time. Rechargeable batteries are usually made of lithium-ion. When plugged in to recharge, the flow of electricity reverses, returning the anode and cathode to their original states.

A brief history of batteries

The earliest object resembling a battery may have been built as early as the 3rd century AD, in the form of clay pots uncovered in 1938 by a German painter, Wilhelm König, near Baghdad. Inside each pot was an iron rod wrapped in a sheet of copper. There was enough room in the jars to contain some sort of electrolyte solution, and so König believed the pots to be galvanic cells, possibly used by inhabitants of the Sasanian Empire for electroplating, the process of using an electric current to produce a metal coating.

Sure enough, experiments aimed at recreating these devices (including one by the popular show MythBusters) have found that the design can produce a small voltage, large enough for electroplating. Despite this, most archaeologists today believe that the pots were not used as batteries in the period they were built, but rather as storage vessels for sacred scrolls. Metallic coatings in the period the jars were built was done through a process of fire-gilding, so König’s electroplating theory seems flimsy. Whatever purpose the Baghdad batteries were designed for, they are at least an interesting curio, inadvertent proto-batteries built long before scientists would come to better understand electrical currents.

The first true battery was built in 1800 by Alessandro Volta. In his days as a professor at the University of Pavia, Volta worked with Luigi Galvani, a biologist who discovered while dissecting a frog that, when his scalpel touched the brass hook holding the frog up, its legs would twitch. Galvani (who would inspire the word “galvanize”) believed that this was evidence of an electrical force that animates life, which he dubbed “animal electricity.” Volta reproduced Galvani’s experiment, but came to a different conclusion: it was the connection between the metal scalpel and hook, not the life force of the frog, that produced an electrical current.

Volta’s research led him to create the voltaic pile, stacking discs of zinc and silver, with cardboard soaked in saltwater between them. Connecting the top and bottom disc with a wire, Volta was able to produce an electrical current, and lay the foundation for future batteries. In honor of Volta’s work, the unit of measurement for electrical potential is known as the volt.

The battery as we know it today is a relatively recent invention. Working for Union Carbide on the Eveready battery line in the 1950s, engineer Lewis Urry was given what seems today like a remarkably mundane task: make longer lasting batteries for toys. Rather than improve on the existing design as his bosses expected, Urry decided to create a new battery, and eventually settles on using a mixture of manganese dioxide and powdered zinc. Thus, Urry created the modern alkaline battery, capable of powering devices for exponentially longer than the previous commercial batteries. Although the first alkaline batteries hit the market in 1959, frequent improvements have kept them viable even to the present day.

Will Nicol
Will Nicol is a Senior Writer at Digital Trends. He covers a variety of subjects, particularly emerging technologies, movies…
Zoox recalls robotaxis after Las Vegas crash, citing software fix
zoox recall crash 1739252352 robotaxi side profile in dark mode

Amazon's self-driving vehicle unit, Zoox, has issued a voluntary safety recall after one of its autonomous vehicles was involved in a minor collision in Las Vegas. The incident, which occurred in April 2025, led the company to investigate and identify a software issue affecting how the robotaxi anticipates another vehicle’s path.
The recall, affecting 270 Zoox-built vehicles, was formally filed with the National Highway Traffic Safety Administration (NHTSA). Zoox said the issue has already been addressed through a software update that was remotely deployed to its fleet.
Zoox’s robotaxis, which operate without driving controls like a steering wheel or pedals, are part of Amazon’s entry into the autonomous driving space. According to Zoox’s safety recall report, the vehicle failed to yield to oncoming traffic while making an unprotected left turn, leading to a low-speed collision with a regular passenger car. While damage was minor, the event raised flags about the system’s behavior in complex urban scenarios.
Establishing safety and reliability remain key factors in the deployment of the relatively new autonomous ride-hailing technology. Alphabet-owned Waymo continues to lead the sector in both safety and operational scale, with services active in multiple cities including Phoenix and San Francisco. But GM’s Cruise and Ford/VW-backed Argo AI were forced to abandon operations over the past few years.
Tesla is also expected to enter the robotaxi race with the launch of its own service in June 2025, leveraging its Full Self-Driving (FSD) software. While FSD has faced heavy regulatory scrutiny through last year, safety regulations are expected to loosen under the Trump administration.
Zoox, which Amazon acquired in 2020, says it issued the recall voluntarily as part of its commitment to safety. “It’s essential that we remain transparent about our processes and the collective decisions we make,” the company said in a statement.

Read more
Mitsubishi’s back in the EV game—with a new electric SUV coming in 2026
mitsubishi bev 2026 momentum 2030 line up

Mitsubishi is officially jumping back into the U.S. electric vehicle scene—and this time, it’s not just dipping a toe. The company confirmed it will launch a brand-new battery-electric SUV in North America starting in summer 2026, marking its first fully electric model here since the quirky little i-MiEV left the stage back in 2017.
The new EV will be a compact crossover, and while Mitsubishi is keeping most of the juicy details under wraps, we do know it’ll be based on the same next-gen platform as the upcoming Nissan Leaf. That means it’ll ride on the CMF-EV architecture—the same one underpinning the Nissan Ariya—which supports ranges of up to 300+ miles. So yeah, this won’t be your average entry-level EV.
Designed in partnership with Nissan, the new model will be built in Japan and shipped over to U.S. shores. No word yet on pricing, battery size, or even a name, but Mitsubishi has made it clear this EV is just the beginning. As part of its “Momentum 2030” plan, the company promises a new or updated vehicle every year through the end of the decade, with four electric models rolling out by 2028. And yes, one of those might even be a pickup.
Mitsubishi says the goal is to give customers “flexible powertrain options,” which is marketing speak for: “We’ll have something for everyone.” So whether you're all-in on electric or still into gas or hybrid power, they're aiming to have you covered.
This mystery EV will eventually sit alongside Mitsubishi’s current U.S. lineup—the Outlander, Outlander PHEV, Eclipse Cross, and Outlander Sport—and help the brand move beyond its current under-the-radar status in the electric world.
In short: Mitsubishi’s finally getting serious about EVs, and if this new SUV lives up to its potential, it might just put the brand back on your radar.

Read more
Toyota unveils 2026 bZ: A smarter, longer-range electric SUV
toyota bz improved bz4x 2026 0007 1500x1125

Toyota is back in the electric SUV game with the 2026 bZ, a major refresh of its bZ4X that finally delivers on two of the biggest demands from EV drivers: more range and faster charging.
The headline news is the improved driving range. Toyota now estimates up to 314 miles on a single charge for the front-wheel-drive model with the larger 74.7-kWh battery—about 60 miles more than the outgoing bZ4X. All-wheel-drive variants also get a boost, with up to 288 miles of range depending on trim.
Charging speeds haven’t increased in terms of raw kilowatts (still capped at 150 kW for DC fast charging), but Toyota has significantly improved how long peak speeds are sustained. With preconditioning enabled—especially helpful in colder weather—the new bZ can charge from 10% to 80% in about 30 minutes. Also new: Plug and Charge support for automatic payment at compatible stations and full adoption of the North American Charging Standard (NACS), meaning access to Tesla Superchargers will be standard by 2026.
Under the hood, or rather the floor, Toyota has swapped in higher-performance silicon carbide components to improve efficiency and power delivery. The AWD version now produces up to 338 horsepower and sprints from 0–60 mph in a brisk 4.9 seconds.
Toyota didn’t stop at just the powertrain. The exterior has been cleaned up, with body-colored wheel arches replacing the black cladding, and a sleeker front fascia. Inside, a larger 14-inch touchscreen now houses climate controls, giving the dash a more refined and less cluttered appearance. There’s also more usable storage thanks to a redesigned center console.
With the 2026 bZ, Toyota seems to be responding directly to critiques of the bZ4X. It’s faster, more efficient, and more driver-friendly—finally bringing Toyota’s EV efforts up to speed.

Read more