Skip to main content

How does cloning work, anyway? Your guide to real-world replication

CRISPR
Image used with permission by copyright holder
It’s common knowledge that cloning has broken the bonds of sci-fi, and that labs around the world are experimenting with cloning techniques. But how exactly does cloning work, and why haven’t we heard more about it? More specifically, why haven’t clone armies overrun us yet? Here’s how researchers clone living organisms, and why it remains a complicated process.

Types of Modern Cloning

Recommended Videos

“Cloning” isn’t a very scientific word, so it’s no surprise that there are several different techniques that you could call cloning. That includes the common gene cloning, where biological materials are reproduced — and used for medical techniques or even meeting demand for red meat — as well as therapeutic cloning, which involves swapping nucleus DNA between eggs for a shortened development process.

But for the real, “that’s what I meant” style of cloning, we need to talk about somatic cell nuclear transfer (SCNT). This is the type of cloning that takes the DNA of an adult specimen and reproduces it, so that an embryo with that same DNA is created. It’s the sort of science that inspired stormtroopers and dinosaurs in our favorite movies, and it’s probably exactly what you were thinking of. So let’s talk about how somatic cell nuclear transfer works.

Step 1: Extract DNA from a donor

Image used with permission by copyright holder

First, scientists need healthy, durable cells from a donor — a.k.a. the organism they aim to clone. There are different kinds of cells in the average sexual organism, but somatic cells are the “neutral” type of cell that just hangs out doing its job with the typical two complete sets of chromosomes.

Somatic cells can’t be found among red blood cells, but white blood cells are somatic and a common source for DNA products. Skin cells and the traditional cheek-swab also work, but the cells have to be healthy and undamaged. That’s why it is usually impractical to try to clone ancient frozen or trapped animals: Their cells are almost always heavily damaged.

Step 2: Prepare an egg cell

While one part of the scientific cloning team is working on extracting a plentiful supply of somatic cells from the donor, another part is working to prepare a viable egg cell. It doesn’t necessarily have to be an egg cell from the same species, but for greater chances of success, the closer the better.

When scientists find the right undamaged egg cells, they carefully extract the nucleus of the cell. The nucleus is what holds the single set of chromosomes that contributes to reproduction. But for cloning, they don’t want that DNA — they want an intact, empty shell that can house an embryo. So the nucleus and all its DNA is removed, while the rest of the egg is delicately preserved.

Step 3: Insert somatic cell material

Creative Commons
Creative Commons

Remember, because somatic cells are complete, adult cells not used for reproduction, they have the full dual set of chromosomes, already present and ready for action. However, scientists need to get this DNA into the egg cell and prepared to grow into a new organism. So they — again, very carefully — remove the nucleus and insert it into the waiting, empty egg cell.

The goal is to combine them into a single cell again, which is not easy. Current successful techniques use a very light, directed flow of electricity so that the nucleus and egg cell bind together, and hopefully agree to their new living arrangement.

Step 4: Convince the egg that it’s fertilized and implant it

Image used with permission by copyright holder

Now we have a cloned egg, ready to start growing! But, while the egg does have two sets of chromosomes and, in theory, everything it needs to grow into a copy of the donor organism, it hasn’t actually been fertilized — and it can’t be fertilized without ruining the cloning process.

So scientists try to convince the egg that it’s fertilized and should start growing. This is another area where there is a lot of experimentation with new techniques: Usually, the egg is subjected to chemical cocktails designed to trigger the growth process, often while being zapped with more electricity (sometimes science really is like the movies).

When the cell starts to divide, scientists move quickly onto the next stage, keeping the egg in similar conditions to the real reproductive process. If the egg starts to develop into an embryo that appears healthy, they typically implant that embryo into a living female organism to gestate. This is better for the egg and much less expensive than trying to grown an embryo externally in a lab.

Step 5: Repeat until viability

Closeup of the researched embryos Brivanlou lab/Nature

As you probably noticed, there’s a certain amount of uncertainty and delicate work involved in all the previous steps. Even small amounts of cell damage can be disastrous, and there’s no guarantee a doctored egg will develop correctly either inside or outside the carrying organism. In other words, viability is a major issue. There are a lot of failed attempts and embryos that just don’t develop correctly (often going awry when the embryo is only a small collection of cells), so it takes massive resources, plenty of time, and hundreds of attempts to create a successful clone. Successful live births are a rarity.

Even then, the process is not usually kind to the successful clones. They tend to suffer from shortened lifespans and other problems summed up by what you could call DNA whiplash. However, these problems have diminished as technology has advanced.

Where Cloning is Today

Juan Gärtner/123RF
Juan Gärtner/123RF

The first true cloning using SCNT occurred in 1996 after 276 attempts: The famous Dolly the sheep. This was quickly followed by cloned calves in Japan, and then a number of other animals were added to the list, including cats, dogs, rabbits, rats, horses, and even a rhesus monkey.

Except for rumors, there is no evidence that a human has ever been cloned — primates are especially difficult to clone, and humans are the most difficult of all because of the complex way that our cells divide. Reports of human clones have either been debunked or dropped due to lack of evidence.

Full cloning like this also has relatively little value to the scientific community thus far. Gene cloning is far more advantageous when it comes to healthcare and profit, and much easier to accomplish. True cloning with SCNT has become something of a sideshow as a result: Today, most interest in the process focuses on the applications of stem cells from successful embryos, but that also remains an expensive, controversial process for now.

Tyler Lacoma
Former Digital Trends Contributor
If it can be streamed, voice-activated, made better with an app, or beaten by mashing buttons, Tyler's into it. When he's not…
Mercedes bets solar paint is part of EV-charging future
mercedes solar paint evs benz electric camper

It’s been said that Albert Einstein’s genius came from his ability to freely wonder and ask child-like questions way before he even tried applying science-based solutions.
It seems some within the R&D department at Mercedes-Benz might be similarly inspired. The German automaker is currently developing a special solar paint that, when applied on the surface of vehicles, can harness enough energy from the sun to power up EVs.
The energy generated by the paint’s solar cells can be used for driving or fed directly into a high-voltage battery.
“The photovoltaic system is permanently active and also generates energy when the vehicle is switched off,” Mercedes says. “In the future, this could be a highly effective solution for increased electric range and fewer charging stops.”
The layer of paste to be applied on EVs is significantly thinner than a human hair, yet its photovoltaic cells are packed full of energy. Covering the surface of a mid-size SUV with the paint could produce enough energy for up to 7,456 miles per year under ideal conditions, Mercedes says.
This does imply being in geographic locations with plenty of sun hours during the day.
But even with less-than-ideal sun hours, the energy yielded can make a significant difference to EV charging. Mercedes says the solar-paint charge could provide 100% of needed energy for an average daily drive of 32 miles in sun-drenched Los Angeles. In much less sunny conditions -- such as around Mercedes’ headquarters in Stuttgart, Germany -- it would still yield enough energy for 62% of the distance.
An added bonus for environmentally-conscious drivers: Unlike some solar panels, the solar paint contains no rare earth or silicon – only non-toxic, readily available raw materials. It’s also easy to recycle and considerably cheaper to produce than conventional solar modules, Mercedes says.
The likes of Aptera, Sono Motors, Lightyear, and Hyundai have also been researching how to best harness solar energy to power up EVs.
But that’s been mostly through solar panels yielding enough energy for small and light vehicles, such as Aptera’s three-wheel solar EV. Solar paint could bring solar charging for bigger vehicles, such as electric SUVs, Mercedes says.

Read more
Volkswagen’s affordable ID.2 EV remains on track
vw id2 volkswagen affordable ev 1

It’s no secret that Volkswagen has been facing a huge slump in sales in Europe and China, forcing it to close plants in Germany.

But unlike other European automakers who have stuck to producing high-end electric vehicles (EVs), the German automaker keeps on reaffirming its commitment to bringing affordable EVs to market, including in the U.S.

Read more
Is a Jeep Cherokee replacement slated for 2025?
Jeep Cherokee

Jeep is remaining somewhat mysterious about the name of a new hybrid SUV slated to be part of the brand’s lineup in 2025.
Speaking at the Los Angeles Auto Show recently, Jeep CEO Antonio Filosa would only say that a new compact SUV with a hybrid powertrain was indeed on the way, according to Automotive News.
Filosa had already confirmed last spring that a new “mainstream” large SUV would soon be launched by Jeep, adding that we "could probably guess what it will be called." His comments had sparked speculation that the Cherokee brand name would be back.
While the brand name has existed since 1974, the Cherokee Nation in the U.S. had officially asked Jeep to stop using its name in 2021.
Early last year, Jeep quietly discontinued the model, which was one of its most iconic SUVs of the past 50 years.
The reason? Besides slumping sales, Jeep at the time cited the confluence of market dynamics, consumer preferences, and strategic brand realignment.
The Cherokee was viewed as a classic four-door SUV, known both for its reliability and its ability to suit both off-road and urban environments.
But with time, “consumer preferences have significantly shifted towards larger SUVs equipped with the latest technology and enhanced safety features,” Jeep said at the time. “This trend is accompanied by an increasing demand for environmentally friendly vehicles, steering the market towards hybrid and electric models.”
While no one knows for sure what the new SUV hybrid will be called, Jeep's parent company, Stellantis, is certainly doing everything it can to steer all its brands in the hybrid and electric direction.

Stellantis recently launched a new platform called STLA Frame that’s made for full-size trucks and SUVs. The platform is designed to deliver a driving range of up to 690 miles for extended-range electric vehicles (EREVs) and 500 miles for battery electric vehicles (BEVs).

Read more