How does wireless charging work? Here’s what to know before you cut the cable

When you hear the term “wireless electricity,” it might bring to mind Nikola Tesla and his grand plan to deliver wireless power to the world. While Tesla was a pioneer in the field, his work in the late 19th and early 20th centuries was not practical from a real world standpoint. However, since then, scientists have used his concepts to build real world applications for wireless electricity and wireless charging.

Unlike Tesla’s plans, electricity isn’t delivered by air per se.

Unlike Tesla’s plans, however, electricity isn’t delivered by air per se. Here the term “wireless” refers to the fact that you don’t have to plug the device into a wall outlet or other power source. Instead, the charging surface and the device being charged must be in contact.

As it stands now, there are two major wireless power standards. One, called Qi, is the product of a group of companies known as the Wireless Power Consortium. The other is the AirFuel Alliance, which makes an array of devices that generally carry the brand name PowerMat. While the two groups are competitors, the underlying technology is essentially the same.

Both rely on something called “resonant inductive coupling.” While it sounds complicated, the actual process of transferring power is not as complex as you think. It involves two coils — one a transmitter and the other a receiver — to create an electrical connection. Let’s look at the process in a little more detail.

How does it work?

Resonant inductive coupling (which is also referred to as inductive or resonant power transfer) works like this. Direct current (DC) is supplied to the charging system by a power source. In the transmitting coil, this is energy is converted into alternating current (AC) within the transmitter itself.

This AC energizes the transmitter coil, causing the coil to generate a magnetic field. Placing a receiving coil nearby triggers or induces AC within that receiving coil, and the process happens in reverse to charge the power source of the receiving device.

how does wireless charging work groovmade

If you have an induction cooktop in your kitchen, the process here works much like that. In your kitchen, that magnetic field is heating a piece of metal in the special type of cookware necessary to cook on these ranges. Wireless power works in almost exactly the same way — but instead of using that energy to heat a piece of metal, it’s used to fill up a battery.

What are the benefits?

There are a few tangible benefits to wireless charging technologies. The most obvious is the lack of wires. No doubt you have spent quite a bit of time at some point fishing around in a mountain of cables to find where you put your charger. Another nice feature is that the technologies can be built into a wide array of everyday objects — say, a kitchen countertop or a desk.

The lack of a power plug also allows manufacturers to eradicate a potential entry point for water, dust, and other corrosive materials that might make their way into your device. It also includes built-in functionality to shut down the process when charging is complete.

What are the drawbacks?

Regardless of the technology, wireless charging is still a rather inefficient process. As much as half of the energy is lost, either in the process of creating the magnetic field or the process of sending the energy from the transmitting to receiving coil. This is part of the reason why wireless charging is not as quick as wired.

wireless charging note 8

As we mentioned earlier, the charging surface and the device itself must be in contact. This means that once you remove the device from that charging surface, it halts the process. These technologies are also quite expensive to produce at the moment, so if your device doesn’t have it built in, you’ll likely have to pay a pretty penny to add it retroactively.

Which technology is better?

Since both technologies generally work in the same fashion, it’s difficult to give one method the advantage over the other. However, Qi has thus far attracted the most attention. The group counts more than 200 companies as members, and is the technology of choice for most smartphone manufacturers who’ve opted for wireless charging. Qi is also working on wireless charging for not only mobile devices, which require 5 watts, but a 120-watt standard for monitors and laptops, and a high-end spec that can deliver up to 1 kilowatt of power.

Don’t count out the AirFuel Alliance, however. While it does focus on inductive charging, it signed a deal in 2014 to merge with another wireless consortium called Alliance for Wireless Power (A4WP). A4WP’s technologies work through magnets, and the two groups are currently pooling their resources and patents. This could result in some interesting technologies down the road.

Does my phone support it?

Built-in support for wireless charging isn’t widely available, but by and large those who do support the Qi standard. In September, Apple announced the latest iPhone iterations would support Qi charging. That said, modern popular phones that support it include:

  • iPhone 8, iPhone 8 Plus
  • iPhone X
  • Samsung Note 8
  • Samsung S8, S8 Active
  • Samsung S7, S7 Active, S7 Edge*
  • Samsung S6, S6 Active, S6 Edge, Galaxy S6 Edge Plus
  • Samsung Galaxy Note 5
  • BlackBerry Priv
  • Moto Z (with mod)
  • *also supports AirFuel

Most other devices — including older iPhone models — will support the technology with the addition of a special case or an attachment of some kind. Keep in mind, however, that adding wireless charging technologies after the fact is quite expensive: We would recommend buying a device with the technology built in, instead.


Rumors say Apple's AirPower wireless charger may finally be in production

At its September event in 2018, Apple unveiled the AirPower, a new wireless charging mat that will allow you to charge multiple devices at one time. It has not yet been released. Here's everything we know about the device so far.

Here are 20 portable tech gadgets you’ll want to use every day

If you're looking for portable tech to keep you charged up while on the go (or for some great small gift ideas), we've rounded up 20 must-have gadgets. You'll find everything from a mini gaming controller to a folding Bluetooth keyboard.
Home Theater

Throw away those EarPods -- we dug up the best headphones in every style

Trolling the internet for hours to find headphones is no way to live. Instead, leverage our expertise and experience to find the best headphones for you. Here are our 10 favorites.

Has Apple’s AirPower charging mat finally entered production?

Apple's AirPower wireless charging mat, initially expected to be released in early 2018, has reportedly finally entered production. Two different Apple suppliers are said to be involved in the manufacturing of the device.
Emerging Tech

Why wait? Here are some CES 2019 gadgets you can buy right now

Companies come to CES to wow us with their cutting edge technology, but only a few products are slated to hit the market right away. Here is our list of the best CES 2019 tech you can buy right now.
Emerging Tech

Drones: New rules could soon allow flights over people and at night

With commercial operators in mind, the U.S. government is looking to loosen restrictions on drone flights with a set of proposals that would allow the machines greater freedom to fly over populated areas and also at night.
Emerging Tech

Yamaha’s new app lets you tune your motorcycle with a smartphone

It used to be that if you wanted to tune your motorcycle’s engine and tweak its performance, you needed specialized tools and even more specialized knowledge. Yamaha’s new Power Tuner app changes that.
Emerging Tech

Short film celebrates New Yorker’s amazing robot costumes

New York City resident Peter Kokis creates stunning robot costumes out of household trash. His designs are huge, heavy, and extremely intricate, and never fail to turn heads when he's out and about.
Emerging Tech

In a first for humankind, China is growing plants on the moon

Having recently landed a probe on the far side of the moon, China announced that it managed to grow the first plant on the moon, too. Here's why that matters for deep space travel.
Emerging Tech

Ford’s sweaty robot bottom can simulate 10 years of seat use in mere days

Ford has developed 'Robutt,' a sweaty robot bottom that's designed to simulate the effects of having a pair of human buttocks sitting on its car seats for thousands of hours. Check it out.
Emerging Tech

CES 2019 recap: All the trends, products, and gadgets you missed

CES 2019 didn’t just give us a taste of the future, it offered a five-course meal. From 8K and Micro LED televisions to smart toilets, the show delivered with all the amazing gadgetry you could ask for. Here’s a look at all the big…
Emerging Tech

Want to know which drones are flying near you? There’s an app for that

Want to know what that mysterious drone buzzing over your head is up to? A new system developed by AirMap, Google Wing, and could soon tell you -- via a map on your phone.
Emerging Tech

A Japanese hotel fires half its robot staff for being bad at their jobs

Japan’s oddball Henn na Hotel has fired half of its 243 robot staff. The reason? Because these labor-saving machines turned out to be causing way more problems than they were solving.
Emerging Tech

CERN plans to build a massive particle collider that dwarfs the LHC

CERN already has the world's biggest particle accelerator. Now it wants a bigger one. Meet the 9 billion euro Future Circular Collider that will allow physicists to extend their study of the universe and matter at the smallest level.