Skip to main content

How does wireless charging work? Here’s what to know before you cut the cable

When you hear the term “wireless electricity,” it might bring to mind Nikola Tesla and his grand plan to deliver wireless power to the world. While Tesla was a pioneer in the field, his work in the late 19th and early 20th centuries was not practical from a real world standpoint. However, since then, scientists have used his concepts to build real world applications for wireless electricity and wireless charging.

Unlike Tesla’s plans, electricity isn’t delivered by air per se.

Unlike Tesla’s plans, however, electricity isn’t delivered by air per se. Here the term “wireless” refers to the fact that you don’t have to plug the device into a wall outlet or other power source. Instead, the charging surface and the device being charged must be in contact.

As it stands now, there are two major wireless power standards. One, called Qi, is the product of a group of companies known as the Wireless Power Consortium. The other is the AirFuel Alliance, which makes an array of devices that generally carry the brand name PowerMat. While the two groups are competitors, the underlying technology is essentially the same.

Both rely on something called “resonant inductive coupling.” While it sounds complicated, the actual process of transferring power is not as complex as you think. It involves two coils — one a transmitter and the other a receiver — to create an electrical connection. Let’s look at the process in a little more detail.

How does it work?

Resonant inductive coupling (which is also referred to as inductive or resonant power transfer) works like this. Direct current (DC) is supplied to the charging system by a power source. In the transmitting coil, this is energy is converted into alternating current (AC) within the transmitter itself.

This AC energizes the transmitter coil, causing the coil to generate a magnetic field. Placing a receiving coil nearby triggers or induces AC within that receiving coil, and the process happens in reverse to charge the power source of the receiving device.

Groovemade
Grovemade

If you have an induction cooktop in your kitchen, the process here works much like that. In your kitchen, that magnetic field is heating a piece of metal in the special type of cookware necessary to cook on these ranges. Wireless power works in almost exactly the same way — but instead of using that energy to heat a piece of metal, it’s used to fill up a battery.

What are the benefits?

There are a few tangible benefits to wireless charging technologies. The most obvious is the lack of wires. No doubt you have spent quite a bit of time at some point fishing around in a mountain of cables to find where you put your charger. Another nice feature is that the technologies can be built into a wide array of everyday objects — say, a kitchen countertop or a desk.

The lack of a power plug also allows manufacturers to eradicate a potential entry point for water, dust, and other corrosive materials that might make their way into your device. It also includes built-in functionality to shut down the process when charging is complete.

What are the drawbacks?

Regardless of the technology, wireless charging is still a rather inefficient process. As much as half of the energy is lost, either in the process of creating the magnetic field or the process of sending the energy from the transmitting to receiving coil. This is part of the reason why wireless charging is not as quick as wired.

wireless charging note 8
Samsung
Samsung

As we mentioned earlier, the charging surface and the device itself must be in contact. This means that once you remove the device from that charging surface, it halts the process. These technologies are also quite expensive to produce at the moment, so if your device doesn’t have it built in, you’ll likely have to pay a pretty penny to add it retroactively.

Which technology is better?

Since both technologies generally work in the same fashion, it’s difficult to give one method the advantage over the other. However, Qi has thus far attracted the most attention. The group counts more than 200 companies as members, and is the technology of choice for most smartphone manufacturers who’ve opted for wireless charging. Qi is also working on wireless charging for not only mobile devices, which require 5 watts, but a 120-watt standard for monitors and laptops, and a high-end spec that can deliver up to 1 kilowatt of power.

Don’t count out the AirFuel Alliance, however. While it does focus on inductive charging, it signed a deal in 2014 to merge with another wireless consortium called Alliance for Wireless Power (A4WP). A4WP’s technologies work through magnets, and the two groups are currently pooling their resources and patents. This could result in some interesting technologies down the road.

Does my phone support it?

Built-in support for wireless charging isn’t widely available, but by and large those who do support the Qi standard. In September, Apple announced the latest iPhone iterations would support Qi charging. That said, modern popular phones that support it include:

  • iPhone 8, iPhone 8 Plus
  • iPhone X
  • Samsung Note 8
  • Samsung S8, S8 Active
  • Samsung S7, S7 Active, S7 Edge*
  • Samsung S6, S6 Active, S6 Edge, Galaxy S6 Edge Plus
  • Samsung Galaxy Note 5
  • BlackBerry Priv
  • Moto Z (with mod)
  • *also supports AirFuel

Most other devices — including older iPhone models — will support the technology with the addition of a special case or an attachment of some kind. Keep in mind, however, that adding wireless charging technologies after the fact is quite expensive: We would recommend buying a device with the technology built in, instead.

Dallon Adams
Former Digital Trends Contributor
Dallon Adams is a graduate of the University of Louisville and currently lives in Portland, OR. In his free time, Dallon…
Digital Trends’ Top Tech of CES 2023 Awards
Best of CES 2023 Awards Our Top Tech from the Show Feature

Let there be no doubt: CES isn’t just alive in 2023; it’s thriving. Take one glance at the taxi gridlock outside the Las Vegas Convention Center and it’s evident that two quiet COVID years didn’t kill the world’s desire for an overcrowded in-person tech extravaganza -- they just built up a ravenous demand.

From VR to AI, eVTOLs and QD-OLED, the acronyms were flying and fresh technologies populated every corner of the show floor, and even the parking lot. So naturally, we poked, prodded, and tried on everything we could. They weren’t all revolutionary. But they didn’t have to be. We’ve watched enough waves of “game-changing” technologies that never quite arrive to know that sometimes it’s the little tweaks that really count.

Read more
Digital Trends’ Tech For Change CES 2023 Awards
Digital Trends CES 2023 Tech For Change Award Winners Feature

CES is more than just a neon-drenched show-and-tell session for the world’s biggest tech manufacturers. More and more, it’s also a place where companies showcase innovations that could truly make the world a better place — and at CES 2023, this type of tech was on full display. We saw everything from accessibility-minded PS5 controllers to pedal-powered smart desks. But of all the amazing innovations on display this year, these three impressed us the most:

Samsung's Relumino Mode
Across the globe, roughly 300 million people suffer from moderate to severe vision loss, and generally speaking, most TVs don’t take that into account. So in an effort to make television more accessible and enjoyable for those millions of people suffering from impaired vision, Samsung is adding a new picture mode to many of its new TVs.
[CES 2023] Relumino Mode: Innovation for every need | Samsung
Relumino Mode, as it’s called, works by adding a bunch of different visual filters to the picture simultaneously. Outlines of people and objects on screen are highlighted, the contrast and brightness of the overall picture are cranked up, and extra sharpness is applied to everything. The resulting video would likely look strange to people with normal vision, but for folks with low vision, it should look clearer and closer to "normal" than it otherwise would.
Excitingly, since Relumino Mode is ultimately just a clever software trick, this technology could theoretically be pushed out via a software update and installed on millions of existing Samsung TVs -- not just new and recently purchased ones.

Read more
AI turned Breaking Bad into an anime — and it’s terrifying
Split image of Breaking Bad anime characters.

These days, it seems like there's nothing AI programs can't do. Thanks to advancements in artificial intelligence, deepfakes have done digital "face-offs" with Hollywood celebrities in films and TV shows, VFX artists can de-age actors almost instantly, and ChatGPT has learned how to write big-budget screenplays in the blink of an eye. Pretty soon, AI will probably decide who wins at the Oscars.

Within the past year, AI has also been used to generate beautiful works of art in seconds, creating a viral new trend and causing a boon for fan artists everywhere. TikTok user @cyborgism recently broke the internet by posting a clip featuring many AI-generated pictures of Breaking Bad. The theme here is that the characters are depicted as anime characters straight out of the 1980s, and the result is concerning to say the least. Depending on your viewpoint, Breaking Bad AI (my unofficial name for it) shows how technology can either threaten the integrity of original works of art or nurture artistic expression.
What if AI created Breaking Bad as a 1980s anime?
Playing over Metro Boomin's rap remix of the famous "I am the one who knocks" monologue, the video features images of the cast that range from shockingly realistic to full-on exaggerated. The clip currently has over 65,000 likes on TikTok alone, and many other users have shared their thoughts on the art. One user wrote, "Regardless of the repercussions on the entertainment industry, I can't wait for AI to be advanced enough to animate the whole show like this."

Read more