Skip to main content

NASA confirms that the ‘impossible’ EmDrive thruster really works, after new tests

Engineer Roger Shawyer’s controversial EmDrive thruster jets back into relevancy this week, as a team of researchers at NASA’s Eagleworks Laboratories recently completed yet another round of testing on the seemingly impossible tech. Though no official peer-reviewed lab paper has been published yet, and NASA institutes strict press release restrictions on the Eagleworks lab these days, engineer Paul March took to the NASA Spaceflight forum to explain the group’s findings. In essence, by utilizing an improved experimental procedure, the team managed to mitigate some of the errors from prior tests — yet still found signals of unexplained thrust.

Isaac Newton should be sweating.

Recommended Videos

Flying in the face of traditional laws of physics, the EmDrive makes use of a magnetron and microwaves to create a propellant-less propulsion system. By pushing microwaves into a closed, truncated cone and back towards the small end of said cone, the drive creates the momentum and force necessary to propel a craft forward. Because the system is a reaction-less drive, it goes against humankind’s fundamental comprehension of physics, hence its controversial nature.

emdrivepicture1-640x640
Image used with permission by copyright holder

On the NASA spaceflight forums, March revealed as much as he could about the advancements that have been made with EmDrive and its relative technology. After apologizing for not having the ability to share pictures or the supporting data from a peer-reviewed lab paper, he starts by explaining (as straightforward as rocket science can get) that the Eagleworks lab successfully built and installed a 2nd generation magnetic damper which helps reduce stray magnetic fields in a vacuum chamber. The addition reduced magnetic fields by an order of magnitude inside the chamber, and also decreased Lorentz force interactions.

However, despite ruling out Lorentz forces almost entirely, March still reported a contamination caused by thermal expansion. Unfortunately, this reported contamination proves even worse in a vacuum (i.e. outer space) due in large part to its inherently high level of insulation. To combat this, March acknowledged the team is now developing an advanced analytics tool to assist in the separation of the contamination, as well as an integrated test which aims to alleviate thermally induced errors altogether.

While these advancements and additions are no doubt a boon for continued research of the EmDrive, the fact that the machine still produced what March calls “anomalous thrust signals” is by far the test’s single biggest discovery. The reason why this thrust exists still confounds even the brightest rocket scientists in the world, but the recurring phenomenon of direction-based momentum does make the EmDrive appear less a combination of errors and more like a legitimate answer to interstellar travel.

Eagleworks Laboratories’ recent successful testing is the latest in a long line of scientific research allowing EmDrive to slowly shed its “ridiculous” title. Though Shawyer unveiled the device in 2003, it wasn’t until 2009 that a group of Chinese scientists confirmed what he initially asserted to be true — that is, that filling a closed, conical container with resonating microwaves does, in fact, generate a modest amount of thrust towards the wide end of the container. Although extremely cautious about the test, the team in China found the theoretical basis to be correct and that net thrust is plausible.

 

The thing is, the initial reaction on this theory (especially from the west) was met with polite skepticism. Though the published work showed the calculations to be consistent with theoretical calculations, the test was conducted at such low power that the results were widely deemed to be useless. Luckily, this didn’t stop the good folks over at NASA from giving the EmDrive a spin, resulting in an official study that was conducted in August of 2013. After deliberating on the findings, the space agency officially published its judgment in June of the following year before presenting it at the 50th Joint Propulsion Conference in Cleveland, Ohio.

NASA concluded the RF resonant cavity thruster design does produce thrust “not attributable to any classical electromagnetic phenomenon.” In other words, NASA confirmed Shawyer’s initial prognosis (much like the team of Chinese scientists), but couldn’t come up with a reasonable explanation as to why the thing works outside of, “it just does.”

Moving forward, NASA’s short term objective is to conduct a diverse array of tests on a quantum vacuum plasma thruster (a similar propellantless engine flatter in shape than the EmDrive), in hopes of gaining independent verification and validation of the thruster. Initial IV&V testing will be supported by the Glenn Research Center in Cleveland, Ohio, making use of a stainless steel vacuum chamber which has the capacity to detect force at a single-digit micronewton level, called a low-thrust torsion pendulum.

After that, a similar round of low-thrust torsion pendulum tests will then be conducted at NASA’s Jet Propulsion Laboratory before comparing the findings. It’s also reported that the Johns Hopkins University Applied Physics Laboratory has contacted the lab about conducting Cavendish Balance-type testing of the IV&V shipset. Ideally, this test would allow Johns Hopkins to measure the amount of gravitational force exerted in propellantless engines.

At this time, it’s unknown when Eagleworks Laboratories intends to officially publish its peer-reviewed paper, but even so, just hearing of the EmDrive’s advancements from one of its top engineers bodes well for the future of this fascinating tech.

Rick Stella
Former Associate Editor, Outdoor
Rick became enamored with technology the moment his parents got him an original NES for Christmas in 1991. And as they say…
Sebastian Stan lays out Bucky’s future after Thunderbolts
Sebastian Stan in Thunderbolts.

There are some spoilers ahead for the ending of Marvel's Thunderbolts. Stop reading now if you don't want to be spoiled.

Earlier this year, Captain America: Brave New World briefly introduced a new direction for James "Bucky" Barnes, a character Sebastian Stan has been playing since 2011 in Captain America: The First Avenger. In Brave New World, the former Winter Soldier apparently retired from being a reformed hero and went into politics by running for Congress. Thunderbolts reveals that Bucky won his election to the House of Representatives. But his stay in Congress was short.

Read more
Jeep Compass EV breaks cover—but will it come to the U.S.?
jeep compass ev us newjeepcompassfirsteditionhawaii  4

Jeep just pulled the wraps off the all-new Compass EV, and while it’s an exciting leap into the electric future, there's a catch—it might not make it to the U.S. anytime soon.
This is a brand new electric version of the Jeep Compass, and being built on Stellantis' STLA platform—the same architecture underpinning models like the Peugeot E-3008 and E-5008—it looks much slicker and packs a lot more inside than previous versions of the Compass.
Let’s start with what’s cool: the new Compass EV is packing up to 404 miles of range on a single charge, a 74 kWh battery, and fast-charging that gets you from 20% to 80% in about 30 minutes. Not bad for a compact SUV with Jeep's badge on the nose.
There are two versions: a front-wheel-drive model with 213 horsepower and a beefier all-wheel-drive version with 375 horsepower. That AWD setup isn’t just for looks—it can handle 20% inclines even without front traction, and comes with extra ground clearance and better off-road angles. In short, it’s still a Jeep.
The design's been refreshed too, and inside you’ll find the kind of tech and comfort you’d expect in a modern EV—sleek, smart, and ready for both city streets and dirt trails.
But here’s the thing: even though production starts soon in Italy, Jeep hasn’t said whether the Compass EV is coming to America. And the signs aren’t promising.
Plans to build it in Canada were recently put on hold, with production now delayed until at least early 2026. Some of that might have to do with possible U.S. tariffs on Canadian and Mexican vehicles—adding a layer of uncertainty to the whole rollout.
According to Kelley Blue Book, a Stellantis spokesperson confirmed that the company has “temporarily paused work on the next-generation Jeep Compass, including activities at” the Canadian plant that was originally meant to build the model. They added that Stellantis is “reassessing its product strategy in North America” to better match customer needs and demand for different powertrain options.
So while Europe and other markets are gearing up to get the Compass EV soon, American drivers might be left waiting—or miss out entirely.
That’s a shame, because on paper, this electric Jeep hits a lot of sweet spots. Let’s just hope it finds a way over here.

Read more
Charlie Cox singles out his least favorite Daredevil: Born Again episode
Charlie Cox in Daredevil: Born Again.

Daredevil: Born Again season 1 was largely reconceived after the 2023 actor and writer strikes. Dario Scardapane -- a veteran of The Punisher series on Netflix -- was brought in to be the new showrunner and he made a lot of changes to the series that were well-received. However, there's one episode that Scardapane didn't really change at all, and it happens to be the least favorite episode of Daredevil: Born Again's leading man, Charlie Cox.

During an appearance on The Playlist, Cox noted that he wasn't very fond of the season's fifth episode, "With Interest," which was a largely standalone episode that featured his character, Matt Murdock, in a bank during a hostage crisis.

Read more