Skip to main content

Sea anemone genes could spur advancements in regenerative medicine

sea anemone heart gene regeneration regenerative medicine
In the future, artificial and transplanted organs may be things of the past as regenerative medicine becomes so advanced that a damaged heart or lung is simply regrown from cells already present.

That possibility is still far in the distance, but a new study out of the University of Florida could help pave the way. While examining the genes of the starlet sea anemone — an invertebrate capable of regenerating itself — a research team led by Mark Martindale discovered genes that are known to grow heart cells in humans.

The finding was surprising in part because anemones don’t have hearts or muscles, and yet Martindale knew they shared more in common with humans than might be expected.

“A group of us sequenced the genome of the anemone … about 10 years ago,” he told Digital Trends. “One of the super cool things we found was that this little sea anemone had more genes in common with human beings than all of the other so-called ‘model systems’ that 99 percent of the people in my field work on.”

Since these model systems — including fruit flies and nematodes — are nearer to humans on the evolutionary timescale, that finding suggested that they’ve lost genes along the way.

“It turns out that the number of genes you have does not seem to be a very good predictor of organismal complexity as we have traditionally interpreted it,” Martindale said.

Rather of the number of genes, the deciding factor may be the way they communicate with each other.

“One of the most important findings in this paper is not necessarily how many genes are involved in ‘heart’ formation, but how they are ‘wired-up.’” Martindale explained. “Genes control other genes in very complicated networks. Many people focus on genes that are involved in cell division … but not as many people have studied the differences in how these genes ‘talk’ to each other in animals that can regenerate versus those that can not regenerate.”

By understanding how genes communicate, the researchers hope that they can someday stimulate regenerative healing in the human body.

But there’s a lot of work to be done first. One of the big challenges will be determining whether certain mechanisms are species-specific or if they can be adapted. In vertebrates, for example, heart genes create “lockdown loops” that require them to perform functions related to their location in the body. Anemone genes don’t lockdown in such a way. It’s unclear whether this feature is fixed to anemone or if it can be activated in humans as well.

Editors' Recommendations

Dyllan Furness
Dyllan Furness is a freelance writer from Florida. He covers strange science and emerging tech for Digital Trends, focusing…
Researchers develop nanowire battery that could last for decades
Several batteries stacked up, side by side.

It's no secret that batteries, the lifeblood of the portable electronics we use on a daily basis, haven't seen a meaningful technological leap for more than a decade. The reason? The density of lithium-ion cells, by far the most efficient and most cost-effective to manufacture, is constrained by the volatility of the chemicals they contain. That roadblock has encouraged experimentation with such exotic compounds as calcium and salt, but even the most promising alternatives remain years from commercialization; for the foreseeable future, we're stuck with lithium-ion. Luckily, though, new research in the area of nanowires -- surfaces "thousands of times thinner than a human hair" -- could mitigate the lithium-ion batteries most glaring flaw. A short lifespan.

In a study conducted by the University of California, Irvine in coordination with the Nanostructures for Electrical Energy Storage Energy Frontier Research Center at the University of Maryland, researchers engineered a battery containing tiny conductive filaments that can store and transport electrons. That in itself isn't particularly noteworthy -- filaments form the basis of modern lithium-ion batteries -- but the breakthrough is in the robustness of the nanowires. While most filaments last between 5,000 and 7,000 battery recharging cycles, the UC team's prototype can withstand up to 200,000.

Read more
Sea lion flippers could help engineers design stealthier submersibles
sea lion flipper subs

Sea lions have an uncanny way of swimming that sets them apart from other aquatic animals. Unlike most marine mammals that push themselves using their tails, the sea lion uses a pair of flippers to pull itself through the water. This unique mode of propulsion inspired mechanical engineer Megan Leftwich of George Washington University, who is using 3D printing to create artificial flippers for motion study experiments. This flipper technology could pave the way for highly maneuverable and super-stealthy submersibles, reports Wired.

The motion of the sea lion flipper makes for a highly efficient propulsion system. The flippers work in tandem in a way that is similar to a human breast stroke. When swimming, the sea lion moves its flippers from its nose to its belly in one smooth stroke. This creates a jet that pushes the sea lion forward. The motion of the stroke down the body is so efficient that the animal doesn't need to constantly paddle. It can move long distances by repeatedly flapping and then coasting.

Read more
Why AI will never rule the world
image depicting AI, with neurons branching out from humanoid head

Call it the Skynet hypothesis, Artificial General Intelligence, or the advent of the Singularity -- for years, AI experts and non-experts alike have fretted (and, for a small group, celebrated) the idea that artificial intelligence may one day become smarter than humans.

According to the theory, advances in AI -- specifically of the machine learning type that's able to take on new information and rewrite its code accordingly -- will eventually catch up with the wetware of the biological brain. In this interpretation of events, every AI advance from Jeopardy-winning IBM machines to the massive AI language model GPT-3 is taking humanity one step closer to an existential threat. We're literally building our soon-to-be-sentient successors.

Read more