Skip to main content

This clever new technique could help us map the ocean floor — from the sky

Stanford University

A friend of mine who works in games design recently showed me a 3D model of the Earth, rendered in great detail using topographically accurate satellite data, so that we could soar through canyons and our respective neighborhoods at high speed like a pair of joyriding Supermen. “Let’s see if we can go underwater,” he said, exhilarated, as we flew out over the Pacific.

We couldn’t. The model, so stunningly accurate on land, apparently had zero data with which to model the undersea environment. It was an unrendered void beneath the water’s glassy surface, as if this was some subaquatic version of The Truman Show, and we had reached the end of the world.

Neither of us was particularly surprised. The shock would have been if the oceans had been rendered. Where would that information have come from? And how accurate would it have been? It would have meant the model’s creators knew something that even the world’s foremost oceanographers do not.

For all the justifiable excitement around exploring space in the 2020s (Elon Musk is “highly confident” that humans will be rocketing toward Mars by 2026), our planet’s oceans remain a largely uncharted and unknown domain that’s much closer to home. Water covers around 71 percent of Earth’s surface, with the freshwater stuff we drink accounting for a minuscule 3 percent, little more than a rounding error. But the overwhelming majority of the Earth’s oceans — up to 95 percent — are an unexplored mystery.

While we’re still a long way off from a Google Street View equivalent for the undersea world, a new project being carried out by researchers at Stanford University could pave the way for just such a thing in the future — and a whole lot more besides. Picture being able to fly an airplane over a stretch of water and see, with absolute clarity, what’s hiding beneath the waves.

It sounds impossible. As it turns out, it’s just really, really difficult.

The issue with lidar, the trouble with sonar

“Imaging underwater environments from an airborne system is a challenging task, but one that has many potential applications,” Aidan James Fitzpatrick, a graduate student in Stanford University’s department of and electrical engineering, told Digital Trends.

The obvious candidate for this imaging job is lidar. Lidar is the bounced laser technology most famous for helping (non-Tesla) autonomous vehicles to perceive the world around them. It works by emitting pulsed light waves and then measuring how long they take to bounce off objects and return to the sensor. Doing this allows the sensor to calculate how far the light pulse traveled and, as a result, to build up a picture of the world around it. While self-driving cars remain the best-known use of lidar, it can be used as a powerful mapping tool in other contexts as well. For example, researchers used it in 2016 to uncover a long-lost city hidden beneath dense foliage cover in the Cambodian jungle.

Lidar isn’t appropriate for this kind of mapping, though. Although advanced, high-power lidar systems perform well in extremely clear waters, much of the ocean — especially coastal water — tends to be murky and opaque to light. As a result, Fitzpatrick said, much of the underwater imaging performed to date has relied on in-water sonar systems that use sound waves able to propagate through murky waters with ease.

Unfortunately, there’s a catch here, too. In-water sonar systems are mounted to, or towed by, a slow-moving boat. Imaging from the air, using a flying airborne vehicle, would be more effective since it could cover a much greater area in less time. But it’s impossible since sound waves cannot pass from air into water and then back again without losing 99.9999 percent of their energy.

What comes to PASS

Consequently, while lidar and radar systems have mapped the entire Earth’s landscape (emphasis on the “land”), only around 5 percent of the global waters have been the subject of similar imaging and mapping. That’s the equivalent of a world map that only shows Australia, and leaves the rest of it dark like some unexplored Age of Empires map.

“Our goal is to propose a technology which can be mounted on a flying vehicle to provide large-scale coverage while using an imaging technique that is robust in murky water,” Fitzpatrick said. “To do this, we are developing what we have coined a Photoacoustic Airborne Sonar System. PASS exploits the benefits of light propagation in air and sound propagation in water to image underwater environments from an airborne system.”

Stanford University

PASS works like this: First, a special custom laser system fires a burst of infrared light that is absorbed by the first centimeter or so of water. Once laser absorption has occurred, the water thermally expands, creating sound waves that are able to travel into the water.

“These sound waves now act as an in-water sonar signal that was remotely generated using the laser,” Fitzpatrick continued. “The sound waves will reflect off underwater objects and travel back toward the water surface. Some of this sound – only about 0.06 percent – crosses the air-water interface and travels up toward the airborne system. High-sensitivity sound receivers, or transducers, capture these sound waves. The transducers [then] convert the sound energy to electrical signals which can be passed through image reconstruction algorithms to form a perceptible image.”

The things that lie beneath

So far, PASS is a work in progress. The team has demonstrated high-resolution, three-dimensional imaging in a controlled lab environment. But this, Fitzpatrick acknowledged, is in a “container the size of a large fish tank,” although the technology is now “close to the stage” where it could be deployed over a large swimming pool.

Stanford University

There is, of course, a slight difference between a large swimming pool and the entirety of Earth’s oceans, and this will require considerably more work. In particular, a big challenge to be solved before testing in larger, more uncontrolled environments is how to tackle imaging through water with turbulent surface waves. Fitzpatrick said that this is a head-scratcher, but it’s one that “surely has feasible solutions,” some of which the team is already working on.

“PASS could be used to map the depths of uncharted waters, survey biological environments, search for lost wreckages, and potentially much more,” he said. “Isn’t it strange,” he added, “that we have yet to explore the entirety of the Earth we live on? Maybe PASS can change this.”

Combining light and sound in order to solve the air-water interface would be a game changer. And after that? Bring on the army of mapping drones to finally help show us what lies beneath the ocean’s surface.

A paper describing the PASS project was recently published in the journal IEEE Access.

Editors' Recommendations

Luke Dormehl
I'm a UK-based tech writer covering Cool Tech at Digital Trends. I've also written for Fast Company, Wired, the Guardian…
Digital Trends’ Tech For Change CES 2023 Awards
Digital Trends CES 2023 Tech For Change Award Winners Feature

CES is more than just a neon-drenched show-and-tell session for the world’s biggest tech manufacturers. More and more, it’s also a place where companies showcase innovations that could truly make the world a better place — and at CES 2023, this type of tech was on full display. We saw everything from accessibility-minded PS5 controllers to pedal-powered smart desks. But of all the amazing innovations on display this year, these three impressed us the most:

Samsung's Relumino Mode
Across the globe, roughly 300 million people suffer from moderate to severe vision loss, and generally speaking, most TVs don’t take that into account. So in an effort to make television more accessible and enjoyable for those millions of people suffering from impaired vision, Samsung is adding a new picture mode to many of its new TVs.
[CES 2023] Relumino Mode: Innovation for every need | Samsung
Relumino Mode, as it’s called, works by adding a bunch of different visual filters to the picture simultaneously. Outlines of people and objects on screen are highlighted, the contrast and brightness of the overall picture are cranked up, and extra sharpness is applied to everything. The resulting video would likely look strange to people with normal vision, but for folks with low vision, it should look clearer and closer to "normal" than it otherwise would.
Excitingly, since Relumino Mode is ultimately just a clever software trick, this technology could theoretically be pushed out via a software update and installed on millions of existing Samsung TVs -- not just new and recently purchased ones.

Read more
AI turned Breaking Bad into an anime — and it’s terrifying
Split image of Breaking Bad anime characters.

These days, it seems like there's nothing AI programs can't do. Thanks to advancements in artificial intelligence, deepfakes have done digital "face-offs" with Hollywood celebrities in films and TV shows, VFX artists can de-age actors almost instantly, and ChatGPT has learned how to write big-budget screenplays in the blink of an eye. Pretty soon, AI will probably decide who wins at the Oscars.

Within the past year, AI has also been used to generate beautiful works of art in seconds, creating a viral new trend and causing a boon for fan artists everywhere. TikTok user @cyborgism recently broke the internet by posting a clip featuring many AI-generated pictures of Breaking Bad. The theme here is that the characters are depicted as anime characters straight out of the 1980s, and the result is concerning to say the least. Depending on your viewpoint, Breaking Bad AI (my unofficial name for it) shows how technology can either threaten the integrity of original works of art or nurture artistic expression.
What if AI created Breaking Bad as a 1980s anime?
Playing over Metro Boomin's rap remix of the famous "I am the one who knocks" monologue, the video features images of the cast that range from shockingly realistic to full-on exaggerated. The clip currently has over 65,000 likes on TikTok alone, and many other users have shared their thoughts on the art. One user wrote, "Regardless of the repercussions on the entertainment industry, I can't wait for AI to be advanced enough to animate the whole show like this."

Read more
4 simple pieces of tech that helped me run my first marathon
Garmin Forerunner 955 Solar displaying pace information.

The fitness world is littered with opportunities to buy tech aimed at enhancing your physical performance. No matter your sport of choice or personal goals, there's a deep rabbit hole you can go down. It'll cost plenty of money, but the gains can be marginal -- and can honestly just be a distraction from what you should actually be focused on. Running is certainly susceptible to this.

A few months ago, I ran my first-ever marathon. It was an incredible accomplishment I had no idea I'd ever be able to reach, and it's now going to be the first of many I run in my lifetime. And despite my deep-rooted history in tech, and the endless opportunities for being baited into gearing myself up with every last product to help me get through the marathon, I went with a rather simple approach.

Read more