Skip to main content

Edit, undo: Temporary gene editing could help solve the mosquito problem

Mosquitos aren’t just a pest that nibble on you when you’re trying to get to sleep in the summertime; they’re by far the deadliest animals on the planet. According to the World Health Organization, mosquito bites cause the death of one million people each year. The majority of these are the result of malaria, one of the many human-affecting diseases these tiny bloodsuckers can carry.

For this reason, scientists trying to tackle these diseases have explored a range of potential solutions — such as gene drives, referring to tiny fragments of DNA that can be inserted into a mosquito’s chromosomes to deplete populations in various ways.

But if SyFy original movies have taught us anything, it’s that genetically tweaking organisms and then releasing them can… well, not go quite according to plan.

With that in mind, a new Texas A&M AgriLife Research project seeks to test out genetic modifications of mosquitos that would delete themselves from the genetic code after a certain period. This means that “test runs” of genetic changes could be made, knowing that everything will reset to normal after a designated period like one year (which equates to around 20 generations of mosquito).

Temporary tampering

“Rather than develop a new way to perform gene drive, our [project] provides a pathway to modify existing gene drive approaches to make them more temporary,” Zach Adelman, a Professor in the Department of Entomology at Texas A&M University, told Digital Trends. “Other approaches to remove gene drive pests rely on either releasing a second wave of genetically engineered or unmodified pests, or to just let the engineered sequences decay on their own.”

The problem with these two approaches is that the former is not very practical (“If something goes wrong during the release of gene drive pests, it is not likely the same group of scientists will be allowed to release a different version to control the first,” Adelman said), while the latter would take too long. This project could get around that, thereby lowering the risk of genetic modification without having to curtail necessary experimentation.

You may be waiting a bit longer before this theoretical project becomes a reality, however. “We are just at the start of a five-year project to demonstrate our biodegradable approach,” said Adelman. “This strategy relies on the DNA repair machinery of the insect. That’s our first step: determine some of the parameters that the insect uses to decide when to repair DNA damage, using machinery that will remove our engineered sequences, as opposed to different machinery that kind of patches over the broken ends.”

He noted that, should all go according to plan, the first set of experimental findings related to this could be released in 2021. A research paper describing this initiative was recently published in the journal Philosophical Transactions of the Royal Society B.

Editors' Recommendations

Luke Dormehl
I'm a UK-based tech writer covering Cool Tech at Digital Trends. I've also written for Fast Company, Wired, the Guardian…
How Intel and Microsoft are teaming up to take on Apple
An Intel Meteor Lake system-on-a-chip.

It seems like Apple might need to watch out, because Intel and Microsoft are coming for it after the latter two companies reportedly forged a close partnership during the development of Intel Lunar Lake chips. Lunar Lake refers to Intel's upcoming generation of mobile processors that are aimed specifically at the thin and light segment. While the specs are said to be fairly modest, some signs hint that Lunar Lake may have enough of an advantage to pose a threat to some of the best processors.

Today's round of Intel Lunar Lake leaks comes from Igor's Lab. The system-on-a-chip (SoC), pictured above, is Intel's low-power solution made for thin laptops that's said to be coming out later this year. Curiously, the chips weren't manufactured on Intel's own process, but on TSMC's N3B node. This is an interesting development because Intel typically sticks to its own fabs, and it even plans to sell its manufacturing services to rivals like AMD. This time, however, Intel opted for the N3B node for its compute tile.

Read more
How much does an AI supercomputer cost? Try $100 billion
A Microsoft datacenter.

It looks like OpenAI's ChatGPT and Sora, among other projects, are about to get a lot more juice. According to a new report shared by The Information, Microsoft and OpenAI are working on a new data center project, one part of which will be a massive AI supercomputer dubbed "Stargate." Microsoft is said to be footing the bill, and the cost is astronomical as the name of the supercomputer suggests -- the whole project might cost over $100 billion.

Spending over $100 billion on anything is mind-blowing, but when put into perspective, the price truly shows just how big a venture this might be: The Information claims that the new Microsoft and OpenAI joint project might cost a whopping 100 times more than some of the largest data centers currently in operation.

Read more
There’s an unexpected, new competitor in PC gaming
Snapdragon's X Elite PC SoC.

Windows gaming on ARM is becoming a legitimate possibility, and it's not just thanks to the recently unveiled emulation options, but it's chiefly due to the fact that Qualcomm's Snapdragon X Elite is shaping up to be pretty excellent. Spotted in a recent benchmark, the CPU was seen beating some of the best processors on the current market. Are we finally at a point where it's not always going to be a choice between just Intel and AMD?

The benchmarks were posted by user @techinmul on Twitter, and the results couldn't be more promising for the upcoming Qualcomm processor. The chip was tested in Geekbench 6, and although it's important not to take these results entirely at face value, it's an impressive show of performance that bodes well for upcoming thin and light laptops.

Read more