Skip to main content

Scientists encode the novel ‘Wonderful Wizard of Oz’ in DNA

A few years ago, Harvard scientists successfully managed to encode a low-resolution GIF of a horse galloping into the DNA of an e.coli bacteria. Now, researchers have shown off the next level of DNA encoding: By storing the entire L. Frank Baum novel “The Wonderful Wizard of Oz” (the basis for the classic 1939 Hollywood movie of almost the same name) in the form of DNA information.

“We start with the digital version of the text,” Stephen Jones, a research scientist who collaborated on the project, told Digital Trends. “We send that information to our program, which spits out a bunch of DNA sequences, made of A,C,G and Ts. Each sequence is used to make actual pieces of DNA. Those pieces could be stored in some pretty rough conditions for thousands to even millions of years, much like we’ve seen with sequenced dinosaur DNA.”

Coding and decoding the text

Should someone, as Jones said, get the “burning desire” to read the novel in Esperanto, the constructed international auxiliary language it was translated into, they would take these DNA pieces and read back their sequence using a DNA sequencer. The sequence would then go through the algorithm developed by the team, which would translate it back into a digital version readable on computer. “So basically, a computer’s zeros and ones get turned into DNA’s As, Cs, Gs and Ts for storage, then the process is reversed when you’re ready to read,” Jones said.

Carrying out digital-to-DNA conversion has been possible for a long time. But the excitement of this work is the way that the conversion takes place. Digital and DNA storage have different issues, with digital storage being sensitive to electricity, temperatures, water, and more. DNA is more robust in these areas, but is prone to parts being accidentally deleted or added to during the encoding process.

“Academics and big companies like Google and Microsoft have been trying to figure a way around this for a long time,” Jones explained. “Usually, people just read enough copies of the DNA information that if one gets messed up, they can depend on another. You can imagine that process is very inefficient.”

An algorithm to overcome the problems

To overcome this, the team’s encoding algorithm has some neat qualities. To begin with, the information in each DNA sequence helps correct errors in every other DNA sequence’s information so that they build upon each other. The method also accounts for those deletions or additions, is flexible enough that it can be made stronger when a piece of information is really important (a character name in “Wizard of Oz,” for example) and weaker when the information doesn’t matter so much (a random word in the novel), and will specifically avoid DNA sequences known to be problematic like a string of A’s in a row. Finally, the method encrypts the information as it’s converted to DNA sequence, adding a layer of protection and privacy that could be useful with data more sensitive than a 120-year-old public domain novel.

“A top [real-world] use would be for long-term storage when you must keep the information, but use it infrequently,” Jones said, giving the example of historical banking data for years past. “Tech companies would see value for dormant accounts that no one’s using, but they don’t want to delete. There could [additionally] be a huge cost savings during storage. Storing DNA takes almost no energy — especially compared to keeping data servers plugged in and happy.”

This is a problem that at least one DNA storage company is working on, although it’s likely several years away from being viable. Nonetheless, work like this is a reminder that science is getting closer all the time.

A paper describing the work was recently published in the journal PNAS.

Editors' Recommendations

Luke Dormehl
I'm a UK-based tech writer covering Cool Tech at Digital Trends. I've also written for Fast Company, Wired, the Guardian…
Asus’ new RTX 4090 shattered GPU overclocking records, and you’ll be able to buy it soon
Asus ROG Matrix RTX 4090 graphics card.

If you thought that the RTX 4090 was already the best we'll see in this generation, Asus is here to prove you wrong. Nearly a year after the initial launch of Nvidia's top graphics card, Asus is about to release the ROG Matrix GeForce RTX 4090 -- a one-of-a-kind GPU that already has a new world record under its belt.

ROG Matrix GeForce RTX 4090 Graphics Card

Read more
Watch this incredible slow-motion footage of a rocket engine test
A screenshot from the Slo Mo Guys' footage of a rocket engine test.

Close-up Ignition of a Rocket Engine in Slow Mo - The Slow Mo Guys

The Slow Mo guys -- aka Gavin Free and Daniel Gruchy -- are back with another video that’s as fascinating as it is entertaining, this one showing a rocket engine test in astonishing, slowed down, detail.

Read more
The latest Windows Update is reportedly causing Starfield problems
A man walking into a dusty town on another planet in starfield.

If you've installed the latest Windows 11 update and you've been experiencing all sorts of issues ever since, you're not alone And if you're still yet to install it, it's probably best hold off on it for now. Many users have been reporting problems following the recent update, including crashes, slowdowns, and blue screens of death (BSOD). Gamers appear to be affected most of all, with some reporting stuttering in Starfield and Ratchet and Clank: Rift Apart. 

Following the latest update released on Patch Tuesday, various reports of problems started pouring in across social media and Microsoft's Feedback Hub. Microsoft itself hasn't spoken up about this yet, but considering the number of reported issues, we could soon hear an official comment on the situation. If you've already installed the update and aren't experiencing problems, you have nothing to worry about. If you have installed and are encountering issues, it's best to revert to the previous version and reach out through the Feedback Hub.

Read more